17. During a game of tug of war, two teams of students pull on opposite sides of a rope. During the
game, the rope begins to accelerate towards the left. What must be true about the forces acting on the
rope at the time of the acceleration towards the left?
A. The team pulling towards the right is pulling with a force greater than the team pulling towards the left.
B. The team pulling towards the right is pulling with a force equal to the team pulling towards the left.
C. The team pulling towards the right is pulling with a force less than the team pulling towards the left.
D. The team pulling towards the right stopped pulling the rope while the team pulling towards the left
continued

Answers

Answer 1

Answer:

c

Explanation:

Answer 2
The answer is letter c

Related Questions

15 points!!:-) Need help ASAP!

When does a compass NOT point towards magnetic north?

A.during a solar eclipse, which changes

Earth's magnetic field.

B. When there is another magnet close by.

C.When there is an unused battery close by.

D. When there is a coil of copper wire close by.

Answers

Answer:

b i think so because it makes senes

Answer: When there is another magnet close by.

Explanation: The needle of a compass is itself a magnet, and thus the north pole of the magnet always points north, except when it is near a strong magnet. ... When you take the compass away from the bar magnet, it again points north. So, we can conclude that the north end of a compass is attracted to the south end of a magnet.

What makes electromagnets useful for sorting metals in recycling centers?
O A. The current can be turned on to pick up items containing all
metals and turned off to drop them.
O B. The current can be turned off to pick up items containing all
metals and turned off to drop them.
O C. The current can be turned on to pick up items containing iron and
turned off to drop them.
D. The current can be turned off to pick up items containing iron and
turned on to drop them.

Answers

it’s c sorry if i’m wrong

C

It is right because I took this and I got this answer correct

How high above the ground would a 2 kg object need to be in order to have 180 J
of gravitational potential energy?

Answers

Answer:

energy= MGH

2*9.8*h=180

h=180/19.6

h=9.32 m

The height of the object above the ground would be equal to 9.18 m.

What is gravitational potential energy?

When an object of mass (m) is moved from infinity to a certain point inside the gravitational influence, the amount of work done in displacing it is stored in the form of potential energy and is known as gravitational potential energy.

The mathematical equation for gravitational potential energy can be written as:

Gravitational potential energy = m⋅g⋅h

Where m is the mass, g is the gravitational acceleration and h is the height above the ground.

Given, the mass of the given object, m = 2 Kg

The gravitational potential energy = 180 J

[tex]GPE = m\times g\times h[/tex]

180 = 2 × 9.8 × h

h = 9.18 m

Therefore, the object should be at a height of 9.18 meters in order to have 180 J of gravitational potential energy.

Learn more about gravitational potential energy, here:

https://brainly.com/question/3884855

#SPJ2

Could I get help on this question please

Answers

Answer:

124.51 m

Explanation:

From the question given above, the following data were obtained:

Initial velocity (u) = 49.4 m/s

Final velocity (v) = 0 m/s (at maximum height)

Maximum height (h) =?

NOTE: Acceleration due to gravity (g) = 9.8 m/s²

The maximum height to which the cannon ball attained before falling back can be obtained as illustrated below:

v² = u² – 2gh ( since the ball is going against gravity)

0² = 49.4² – (2 × 9.8 × h)

0 = 2440.36 – 19.6h

Collect like terms

0 – 2440.36 = –19.6h

–2440.36 = –19.6h

Divide both side by –19.6

h = –2440.36 / –19.6

h = 124.51 m

Therefore, maximum height to which the cannon ball attained before falling back is 124.51 m

how do positive and negative acceleration differ?

1. positive acceleration represents an object speeding up; negative acceleration represents an object slowing down

2. positive acceleration moves North or east; negative acceleration moves south or west

3. positive acceleration occurs when there is more velocity than speed; negative acceleration occurs when there is less velocity than speed.

4. positive acceleration occurs when an object changes its speed but not its direction; negative acceleration occurs when an object changes both its speed and direction​

Answers

Answer:

1. positive acceleration represents an object speeding up; negative acceleration represents an object slowing down

Explanation:

Acceleration is clearly defined as the rate of change of velocity with time. When are body is speeding up as we say, it is accelerating. When a body is coming to rest, it is decelerating.

Positive acceleration occurs when the speed of a moving continues to increase.

Negative acceleration is when the speed of a moving body reduces drastically.

Violet pulls a rake horizontally on a frictionless driveway with a net force of 2.0 N for 5.0 m.
How much kinetic energy does the rake gain?

Answers

Answer:

10 J.

Explanation:

Given that,

Net force acting on the rake, F = 2 N

Distance moved by the rake, d = 5 m

We need to find the kinetic energy gained by the rake. We know that,

Kinetic energy = work done

So,

K = F×d

K = 2 N × 5 m

K = 10 J

So, 10 J of kinetic energy is gained by the rake.

Violet pulls a rake horizontally on a frictionless driveway with a net force of 2.0 N for 5.0 m.

How much kinetic energy does the rake gain?

Answer: 10 J

What quantity measures the amount of space an object occupies?
A. Volume B.Temperature C. Mass D. Density

Answers

Answer:

mas

Explanation:

mass is the amount of space something occupies.

The deepest part of the ocean is the Challenger Deep, at 10,900 m. The depth was first measured in 1875 by the HMS Challenger by depth sounding (which does not involve sound waves). If you were to measure the depth by echo sounding (which does involve sound), what would you expect the time for a sound pulse at the surface to return in s, naively assuming a constant sound velocity throughout the ocean

Answers

Answer:

 t = 14.53 s

Explanation:

The speed of a wave is constant and is given by

         v = [tex]\sqrt{ \frac{B}{ \rho} }[/tex]

in this exercise they indicate that we assume the constant velocity, therefore we can use the uniform motion relations

          v = x / t

           t = x / v

in this case the sound pulse leaves the ship and must return so the distance is

          x = 2d

where d is the ocean depth d = 10900m and the speed of sound in seawater is v = 1500 m / s

         

let's calculate

           t = 2 10900/1500

           t = 14.53 s

Which cell line is pointing to the body?

Answers

Answer:

The answer is B .........number 2

Explanation:

Which of the following is an example of Newton's Third Law?* O A stack of pennies will not move unless you flick them over. O Falling off of a skateboard after you run into a curb A ball hits the ground and the ground pushes up on it with the same force​

Answers

Answer:

A ball hits the ground and the ground pushes up on it

Explanation:

Newton's third law basically states that for every action, there's a reaction.

a ball hitting the ground would be the action. the ground pushing up on it with the same force is the reaction.

Hope this Helps!!! :)

The head of a rattlesnake can accelerate at 50 m/s2 in striking a victim. If a car could do as well, how long would it take to reach a speed of 100 km/h from rest

Answers

Answer:

the time for the car to reach the final velocity is 0.56 s.

Explanation:

Given;

acceleration of the car, a = 50 m/s²

final velocity of the car, v = 100 km/h = 27.778 m/s

the initial velocity of the car, u = 0

The time for the car to reach the final velocity is calculated as;

v = u + at

27.778 = 0 + 50t

27.778 =  50t

t = 27.778 / 50

t = 0.56 s

Therefore, the time for the car to reach the final velocity is 0.56 s.

20 points!!!! A 2,00ON steel rod that is 5 meters long is placed in a corner between the floor and a wall, and balanced at an angle using a cord attached to the wall The rod is balanced such that its top end is 2.38 meters away from the wall, The cord is 40 cm long, and it is attached to the wall at a height of 75 cm above the floor. The diagram to the right shows the situation If the lower end of the rod does not slip from the corner, what is the tension in the cord?

Answers

Answer:

WE NEED TO ADD ALL 40+2.38 +75+5

Explanation:

PLSE GIVE SOME POINTS DUDE

A constant torque of 3 Nm is applied to an unloaded motor at rest at time t = 0. The motor reaches a speed of 1,393 rpm in 4 s. Assuming the damping to be negligible, calculate the motor inertia in Nm·s2.

Answers

Answer:

The moment of inertia of the motor is 0.0823 Newton-meter-square seconds.

Explanation:

From Newton's Laws of Motion and Principle of Motion of D'Alembert, the net torque of a system ([tex]\tau[/tex]), measured in Newton-meters, is:

[tex]\tau = I\cdot \alpha[/tex] (1)

Where:

[tex]I[/tex] - Moment of inertia, measured in Newton-meter-square seconds.

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

If motor have an uniform acceleration, then we can calculate acceleration by this formula:

[tex]\alpha = \frac{\omega - \omega_{o}}{t}[/tex] (2)

Where:

[tex]\omega_{o}[/tex] - Initial angular speed, measured in radians per second.

[tex]\omega[/tex] - Final angular speed, measured in radians per second.

[tex]t[/tex] - Time, measured in seconds.

If we know that [tex]\tau = 3\,N\cdot m[/tex], [tex]\omega_{o} = 0\,\frac{rad}{s }[/tex], [tex]\omega = 145.875\,\frac{rad}{s}[/tex] and [tex]t = 4\,s[/tex], then the moment of inertia of the motor is:

[tex]\alpha = \frac{145.875\,\frac{rad}{s}-0\,\frac{rad}{s}}{4\,s}[/tex]

[tex]\alpha = 36.469\,\frac{rad}{s^{2}}[/tex]

[tex]I = \frac{\tau}{\alpha}[/tex]

[tex]I = \frac{3\,N\cdot m}{36.469\,\frac{rad}{s^{2}} }[/tex]

[tex]I = 0.0823\,N\cdot m\cdot s^{2}[/tex]

The moment of inertia of the motor is 0.0823 Newton-meter-square seconds.

3. Do you think Lynn’s (the protagonist)actions were justifiable by her motives? Why or why not? Please help me Bad Genius the movie

Answers

Answer:

I do believe her actions were justified.

Explanation:

Due to the school charging extra fee from her father who makes a modest amount as a teacher. There was sum of money involved that could change how he lived and her.

I do not believe her actions where justified

She had a lot going for her. She could have skipped the hardship of helping grace and pass. She could have easily have gotten a good job with a degree and paid back all the debts owed. Alot of troubles could have been avoided just by doing her own thing.

how is friction involved in the movement of space​

Answers

Answer:

Friction can stop or slow down the motion of an object.

Explanation:

The slowing force of friction always acts in the direction opposite to the force causing the motion.

What the other person said

The nucleus of an atom can be modeled as several protons and neutrons closely packed together.Each particle has a mass of 1.67 3 10227 kg and radius on the order of 10215 m.
(a) Use this model and the data provided to estimate the density of the nucleus of an atom.
(b) Compare your result with the density of a material such as iron. What do your result and comparison suggest about the structure of matter?

Answers

Answer:

Explanation:

Let n be number of total number of nucleons ( protons + neutrons )

Total mass inside nucleus =  n x 1.67 x 10⁻²⁷ Kg

volume of nucleus = 4/3 π r³

= 1.33 x 3.14 x (10⁻¹⁵)³ m

= 4.17 x 10⁻⁴⁵ m³

Density = mass / volume

=  n x 1.67 x 10⁻²⁷ / 4.17 x 10⁻⁴⁵

= .4 n x 10¹⁸ kg / m³

or of the order of 10¹⁸ kg/m³

b )

Density of iron = 7900 kg / m³

or of the order of 10⁴ kg / m³

So nucleus of a matter  is about 10¹⁴ times denser than iron .

Based on your average reaction time, how much time would it take to react to a traffic situation and stop a car traveling at 60 mph (1 mph equals 0.45 m/s) if you could decelerate the car at a rate of -3.4m/s2?

What distance would you travel (in meters) as the car came to a stop in the above situation?


Avg Reaction time: 0.218 ms​

Answers

Answer:

d = 106.41 m

Explanation:

Given that,

Initial speed of the car, u = 60 mph = 26.9 m/s

The deceleration in the car, a = -3.4 m/s²

The average reaction time, t = 0.218 m/s

It finally stops, final velocity, v = 0

We need to find the distance covered by the car as it come to a stop.

Using third equation of motion to find.

[tex]v^2-u^2=2ad\\\\d=\dfrac{v^2-u^2}{2a}\\\\d=\dfrac{0^2-26.9^2}{2\times (-3.4)}\\\\d=106.41 m[/tex]

So, the car will cover 106.41 m as it comes to a stop.

To understand the behavior of the electric field at the surface of a conductor, and its relationship to surface charge on the conductor. A conductor is placed in an external electrostatic field. The external field is uniform before the conductor is placed within it. The conductor is completely isolated from any source of current or charge.

Answers

Answer:

Explanation:

The electric field inside of a conductor is 0 because the conduction electrons are pushed to the outer edges of the conductor. The surface of the conductor still has charge.

A cylindrical resistor element on a circuit board dissipates 1.2 W of power. The resistor is 2 cm long, and has a diameter of 0.4 cm. Assuming heat to be transferred uniformly from all surfaces, determine (a) the amount of heat this resistor dissipates during a 24-hour period, (b) the heat flux, and (c) the fraction of heat dissipated from the top and bottom surfaces.

Answers

Answer:

(a) The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) The fraction of heat dissipated from the top and bottom surfaces is 0.045.

Explanation:

(a) The amount of heat dissipated ([tex]Q[/tex]), measured in joules, by the cylindrical resistor is the power multiplied by operation time ([tex]\Delta t[/tex]), measured in hours. That is:

[tex]Q = \dot Q \cdot \Delta t[/tex] (1)

If we know that [tex]\dot Q = 1.2\,W[/tex] and [tex]\Delta t = 86400\,s[/tex], then the amount of heat dissipated by the resistor is:

[tex]Q = (1.2\,W)\cdot (86400\,s)[/tex]

[tex]Q = 103680\,J[/tex]

The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux ([tex]Q'[/tex]), measured in watts per square meter, is the heat transfer rate divided by the area of the cylinder ([tex]A[/tex]), measured in square meters:

[tex]Q' = \frac{\dot Q}{A}[/tex] (2)

[tex]Q' = \frac{\dot Q}{\frac{\pi}{2}\cdot D^{2}+\pi\cdot D \cdot h }[/tex] (3)

Where:

[tex]D[/tex] - Diameter, measured in meters.

[tex]h[/tex] - Length, measured in meters.

If we know that [tex]\dot Q = 1.2\,W[/tex], [tex]D = 4\times 10^{-3}\,m[/tex] and [tex]h = 2\times 10^{-2}\,m[/tex], the heat flux of the resistor is:

[tex]Q' = \frac{1.2\,W}{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2}+\pi\cdot (4\times 10^{-3}\,m)\cdot (2\times 10^{-2}\,m) }[/tex]

[tex]Q' \approx 4340.589\,\frac{W}{m^{2}}[/tex]

The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) Since heat is uniformly transfered, then the fraction of heat dissipated from the top and bottom surfaces ([tex]r[/tex]), no unit, is the ratio of the top and bottom surfaces to total surface:

[tex]r = \frac{\frac{\pi}{2}\cdot D^{2}}{A}[/tex] (3)

If we know that [tex]A \approx 2.765\times 10^{-4}\,m^{2}[/tex] and [tex]D = 4\times 10^{-3}\,m[/tex], then the fraction is:

[tex]r = \frac{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2} }{2.765\times 10^{-4}\,m^{2}}[/tex]

[tex]r = 0.045[/tex]

The fraction of heat dissipated from the top and bottom surfaces is 0.045.

Which of the following is NOT a characteristic of noble gases?

unreactive
odorless
solid at room temperature
colorless

Answers

solid at room temperature
I think it’s Solid at room temperature

Potential energy is defined as
A. energy of motion
B. moving another object
C. stored energy

Answers

Answer:

c

Explanation:

it is stored energy because it is built up in said object

Concept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of 17.4 m/s and measures a time of 12.4 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet

Answers

Answer:

1.40 m/s^2

Explanation:

Given data

Velocity= 17.4 m/s

time= 12.4 seconds

We want to find the acceleration of the rock

We know that

acceleration = velocity/time

Substitute

acceleration= 17.4/12.4

acceleration=1.40 m/s^2

Hence the acceleration is 1.40 m/s^2

Can someone please help me get this right pleaseee I’ll mark brainless .

Answers

Answer:i think it is c

Explanation:

Answer:

Explanation: i think its c to try it

16. An object has a gravitational potential energy 41,772.5 Jof and has a mass of 1550 kg. How high is it
above the ground?
Plz help

Answers

Answer:

2.75 m.

Explanation:

From the question given above, the following data were obtained:

Potential energy (PE) = 41772.5 J

Mass (m) of object = 1550 kg

Height (h) =?

Potential energy is the energy possess by an object due to its location. Mathematically, potential energy is expressed as shown below:

PE = mgh

Where

PE => potential energy

m => mass of the object

g => acceleration due to gravity

h => height to which the object is located.

With the above formula, we can obtain the height to which the object is located as follow:

Potential energy (PE) = 41772.5 J

Mass (m) of object = 1550 kg

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) =?

PE = mgh

41772.5 = 1550 × 9.8 × h

41772.5 = 15190 × h

Divide both side by 15190

h = 41772.5 / 15190

h = 2.75 m

Thus, the object is located at 2.75 m above the ground.

8) A train enters a curved horizontal section of the track at a speed of 100 km/h and slows down with constant deceleration to 50 km/h in 12 seconds. If the total horizontal acceleration of the train is 2 m/s2 when the train is 6 seconds into the curve, calculate the radius of curvature of the track for this instant.

Answers

Answer:

the radius of curvature of the track for this instant is 266 m

Explanation:

Given that;

The Initial Velocity u = 100 km/h = 100 × [tex]\frac{5}{18}[/tex] = 27.77 m/s

velocity of the train at t=12 s is;

[tex]V_{t=12}[/tex] = 50 km/h = 50 × [tex]\frac{5}{18}[/tex] = 13.89 m/s

now, we calculate the deceleration of the train

[tex]V_{t=12}[/tex]  = u + at

13.89 = 27.77 + [tex]a_{t}[/tex]12

[tex]a_{t}[/tex] = (13.89 - 27.77) / 12

[tex]a_{t}[/tex] = -13.88 / 12

[tex]a_{t}[/tex] = - 1.1566 m/s²

Now, the velocity of the train at 6 seconds is;

[tex]V_{t=6}[/tex]  = u + at

[tex]V_{t=6}[/tex]  = 27.77 + ( - 1.1566 m/s²)6

[tex]V_{t=6}[/tex]  = 27.77 - 6.9396

[tex]V_{t=6}[/tex]  = 20.83 m/s

The acceleration at t=6 s is;

a = √[ ([tex]a_{t}[/tex] )² + ([tex]a_{n}[/tex])²]

a = √[ ([tex]a_{t}[/tex] )² + ([tex]a_{n}[/tex])²]

we substitute

2m/s² = √[ (- 1.15 )² + ([tex]a_{n}[/tex])²]

4 = (- 1.1566 )² + ([tex]a_{n}[/tex])²

4 = 1.3377 +  ([tex]a_{n}[/tex])²

([tex]a_{n}[/tex])² = 4 - 1.3377

([tex]a_{n}[/tex])² = 2.6623

[tex]a_{n}[/tex] = √2.6623

[tex]a_{n}[/tex]  = 1.6316 m/s²

Now the radius of curve is;

a = V² / p

[tex]p_{t=6}[/tex] = ( [tex]V_{t=6}[/tex] )² /  [tex]a_{n}[/tex]

[tex]p_{t=6}[/tex] = ( 20.83 m/s )² /  1.6316 m/s²

[tex]p_{t=6}[/tex] = 433.8889 / 1.6316

[tex]p_{t=6}[/tex] = 265.9 m ≈ 266 m

Therefore;  the radius of curvature of the track for this instant is 266 m

In traveling a distance of 2.3 km between points A and D, a car is driven at 83 km/h from A to B for t seconds and 41 km/h from C to D also for t seconds. If the brakes are applied for 4.4 seconds between B and C to give the car a uniform deceleration, calculate t and the distance s between A and B.

Answers

Answer:

- time t taken for car to travel is 64.57 s

- distance travelled between A and B is 1.4887 km

Explanation:

Given the data in the question;

[tex]U_{BC}[/tex] =  83 km/h = ( 83×1000 / 60×60) =  23.0555 m/s

[tex]U_{CD}[/tex] = 41 km/h = ( 41×1000 / 60×60) =  11.3888 m/s

now, we calculate the acceleration;

a =  (  [tex]U_{BC}[/tex] -  [tex]U_{CD}[/tex] ) / t

we substitute

a =  ( 23.0555 -  11.3888 ) / 4.4

a = 11.6667 / 4.4

a = 2.6515 m/s²

Now equation for displacement from BC

[tex]S_{BC}[/tex] =  [tex]U_{BC}[/tex]t + 1/2.at²

we substitute

[tex]S_{BC}[/tex] =  23.0555×4.4 + 1/2×a×(4.4)²

we substitute -2.6515m/s² for a

[tex]S_{BC}[/tex] =  23.0555×4.4 + 1/2×(-2.6515)×(4.4)²

= 101.4442 - 25.6665

[tex]S_{BC}[/tex] = 75.7792 m

Now, for total distance covered = 2.3km = ( 2.3×1000) = 2300m

so

[tex]S_{AB}[/tex] +  [tex]S_{BC}[/tex] +  [tex]S_{CD}[/tex]  =  2300 m

we substitute substitute

[tex]S_{AB}[/tex] +  75.7792 m +  [tex]S_{CD}[/tex]  =  2300 m

[tex]S_{AB}[/tex] +  [tex]S_{CD}[/tex] = 2300 - 75.7792

[tex]S_{AB}[/tex] +  [tex]S_{CD}[/tex]  = 2224.2208 m

so we substitute 23.0555t for [tex]S_{AB}[/tex]  and 11.3888t for  [tex]S_{CD}[/tex]  

23.0555t + 11.3888t  = 2224.2208

34.4443t = 2224.2208

t = 2224.2208 / 34.4443

t = 64.57 s

Therefore, time t taken for car to travel is 64.57 s

Distance Between A to B

[tex]S_{AB}[/tex]  = t ×  [tex]U_{AB}[/tex]

we substitute

[tex]S_{AB}[/tex]  = 64.57 s × 23.0555

[tex]S_{AB}[/tex]  = 1488.69 m

[tex]S_{AB}[/tex]  = 1.4887 km

Therefore, distance travelled between A and B is 1.4887 km

What school did Ronald McNair go to and what kind of science did he work in

Answers

Answer:

McNair graduated as valedictorian of Carver High School in 1967. In 1971, he received a Bachelor of Science degree in engineering physics, magna cu.m laude, from the North Carolina Agricultural and Technical State University in Greensboro, North Carolina.

A skydiver is using wind to land on a target that is 120 m away horizontally. The skydiver starts from a height of 70 m and is falling vertically at a constant velocity of 7.0 m/s downward with their parachute open (terminal velocity). A horizontal gust of wind helps push them towards the target. What must be their total speed if they want to just hit their target

Answers

Answer:

13.9 m/s.

Explanation:

Since the vertical velocity of the skydiver is constant at v = 7.0 m/s, we find the time, t it takes him to drop from a height of h = 70 m.

So, distance = velocity time

h = vt

t = h/v = 70 m/7 m/s = 10 s

This is also the time it takes him to move horizontally a distance of d = 120 m to the target.

So, his horizontal velocity is v' = distance/time = d/t = 120m/10 s = 12 m/s.

Since both vertical and horizontal velocities are perpendicular, we add them vectorially to obtain the skydivers total speed, V.

So, V = √(v² + v'²)

= √((7.0 m/s)² + (12.0 m/s)'²)

= √(49 m²/s² + 144 m²/s²)

= √(193 m²/s²)

= 13.9 m/s.

The direction of this velocity is Ф = tan⁻¹(v/v')

= tan⁻¹(7 m/s/12 m/s)

= tan⁻¹(0.5833)

= 30.3°

a point charge q1 = 2.40 uC is held stationary at the origin. A second point charge q2 = -4.30uC moves from the point x= .150 m, y= 0.0 m, to the point x = .250 m, y= 0.0m
a) what is the charge in potential energy of the pair of charges?
b) How much work is done by the electric force on q2​

Answers

Answer:150M

Explanation:

You are on the Pirates of the Caribbean attraction in the Magic Kingdom at Disney World. Your boat rides through a pirate battle, in which cannons on a ship and in a fort are firing at each other. While you are aware that the splashes in the water do not represent actual cannonballs, you begin to wonder about such battles in the days of the pirates. Sup-pose the fort and the ship are separated by 75.0 m. You see that the cannons in the fort are aimed so that their cannon-balls would be fired horizontally from a height of 7.00 m above the water.
(a) You wonder at what speed they must be fired in order to hit the ship before falling in the water.
(b) Then, you think about the sludge that must build up inside the barrel of a cannon. This sludge should slow down the cannonballs. A question occurs in your mind: if the can-nonballs can be fired at only 50.0% of the speed found ear-lier, is it possible to fire them upward at some angle to the horizontal so that they would reach the ship?

Answers

Answer:

a) v₀ₓ = 62.76 m / s, b)   θ₁ = 17.6º,   θ₂ = 67.0º

Explanation:

We can solve this exercise using the projectile launch ratios

a) Let's find the time it takes for the bullet to reach the water level

       y = y₀ + v_{oy} t - ½ g t²

when it reaches the water its height is zero y = 0, as the bullet is fired horizontally its initial vertical velocity is zero

         

       0 = y₀ + 0 - ½ g t²

       t =[tex]\sqrt{2y_o/g}[/tex]

       t = [tex]\sqrt{2 \ 7 /9.8}[/tex]          

       t = 1,195 s

now we can calculate the speed with the horizontal movement

        x = v₀ₓ t

        v₀ₓ = x / t

        v₀ₓ = 75.0 / 1.195

        v₀ₓ = 62.76 m / s

b) if the speed of the bullets is half of that found

         v₀ = 62.76 / 2 = 31.38 m / s

let's write the expressions for the distance

          x = v₀ cos θ t

          y = y₀ + v_{oy} sin θ t - ½ g t²

          t = [tex]\frac{x}{v_o \ cos \theta}[/tex]

we substitute

          [tex]0 = y_o + v_o sin \theta \ \frac{x}{v_o \cos \thetay} - 1/2 g \ (\frac{x}{v_o \ cos \theta})^2[/tex]

          [tex]0 = y_o + x tan \theta - \frac{1}{2} g \ \frac{x^2}{ v_o^2 \ cos^2 \theta}[/tex]    

let's use the identified trigonometry

          sec² θ = 1 + tan² θ

         sec θ = 1 / cos θ

         

           

we substitute

          [tex]0 = y_o + x tan \theta - \frac{g x^2}{2 v_o^2} ( 1 + tan^2 \theta)[/tex]

          [tex]\frac{g x^2}{2v_o^2} tan^2 \theta - x tan \theta + \frac{gx^2}{2v_o^2} - y_o = 0[/tex]

we change variable

         tan θ = H

         [tex]\frac{gx^2}{2 v_o^2 } H^2 - x H + \frac{gx^2}{2v_o^2}-y_o =0[/tex]

we subtitle the values

         [tex]\frac{9.8 \ 75^2}{2 \ 31.38^2} H^2 - 75 H + \frac{9.8 \ 75^2}{2 \ 31.38^2}-7 =0[/tex]

         27.99 H² - 75 H + 20.99 = 0

         H² - 2.679 H + 0.75 = 0

we solve the quadratic equation

         H = [2.679 ± [tex]\sqrt{2.679^2 - 4 0.75}[/tex]] / 2

         H = [2,679 ± 2,044] / 2

         H₁ = 0.3175

         H₂ = 2.3615

now we can find the angles

          H₁ = tan θ₁

          θ₁ = tan⁻¹ H₁

          θ₁ = tan⁻¹ 0.3175

          θ₁ = 17.6º

          θ₂ = 67.0º

for these two angles the bullet hits the boat

Other Questions
Write the function rule for the following arithmetic sequence.10, 15, 20, 25, ....when x = 0, 1, 2, 3,....A f(x) = 10x + 5B f(x) = 5x + 10C f(x) = 10(5)xD f(x) = 5(10)x Best describes the relationship between photosynthesis and cellular respiration in terms of energy and matter What was a conquistador in the Americas?a soldier who marched for glory, God, and golda scientist who recorded new species of plants and animals in newly discovered landsa mariner who sailed the oceans to discover new territoriesa missionary who spread Catholicism 1 Would you use saber or conocer when you are talking about.....you knowing that school is important.2 Would you use saber or conocer when you are talking about.....you knowing the football player because they are your siblings.3 Would you use saber or conocer when you are talking about.....you knowing that my brother is a pilot.4 Determine which verb " to know" to use and then write the correct conjugation.Yo _______ unas historias muy divertidas.5 Determine which verb " to know" to use and then write the correct conjugation.Mi abuelo ____________ a un jugador de bisbol.6 Determine which verb " to know" to use and then write the correct conjugation.Vosotros_________ nadar muy bien. 7 Determine which verb " to know" to use and then write the correct conjugation.Yo _______ a tu hermana Teresa.8 Determine which verb " to know" to use and then write the correct conjugation. T_______ a que hora termina la clase? your help would be greatly appreciated Explain why cell going through meiosis must divide twice A shark is swimming 60 feet below the surface of the ocean. There is a fish that is 25 feet deeper in the water use expression (-60)+ (-25) who is first president of united states gallon of gas: $2.15, 15% markup I also don't know what this shape is lol please help #3 (1 pt) A certain baseball card is very rare and is currently worth $2000. If the price of this card increases by 3% a year,write an exponential equation for how much the card will be worth x years from now. The value of 3(2f+3) when f= 5 A single card is drawn from a standard 52 card deck.Work out the probability of choosing "a club".Give your answer in its simplest form.Help pleaseee Complete the analogy:The President is to the nationalgovernment as the Governor is to the evaluate the expression for the given value of the variable 4(x-4); x=7 PLEASE HELP!! 30 POINTSWhat is the length of leg s of the triangle below?45132s454 1. Circle the figure you would use to make the Escherlike tessellation given, The store plans to purchase the uniforms and hand out 5 uniforms to every employee, one for each day of the week uniforms come in packs of 8, and the store plans to purchase 56 packs of uniforms. How many employees can store give uniforms to?Will the store have any uniforms left over? Help I will be marking brainliest!A. 48B. 124.8C. 135.2D. 115.2 Why is the use of controls important in a scientific investigation?