dleleleleldldldldlldldldldlddl
The Cave of Swallows is a natural open-air pit cave in the state of San Luis Potosí, Mexico. The 1220-foot-deep cave was a popular destination for BASE jumpers. The function 1/4sqrt(d) represents the time t (in seconds) that it takes a BASE jumper to fall d feet. How far does a BASE jumper fall in 3 seconds? Pls answer this as quickly as possible. Thanks.
Answer:
The depth to which a BASE jumper jumps in 3 seconds is 144 feet
Step-by-step explanation:
The details of the Cave of Swallows are;
The depth of the cave = 1,220 ft.
The function that represents the duration, t, in seconds it takes to fall d feet is given as follows;
[tex]t = \dfrac{1}{4} \cdot\sqrt{d}[/tex]
The distance a BASE jumper jumps in 3 seconds = Required
By substituting t = 3 in the given function, we get;
[tex]t = 3 = \dfrac{1}{4} \cdot\sqrt{d}[/tex]
Therefore;
4 × 3 = 12 = √d
d = 12² = 144
The distance a BASE jumper jumps in 3 seconds is d = 144 feet.
Mike has a total of 1371 coins in his piggy bank if the total value of his coins is $230.25 and make it only has dimes and quarters how many more times than quarters does Mike have
Answer:129
Step-by-step explanation:(621 x 0.25) + (750 x 0.10) = 230.25
750 - 621 = 129 more dimes than quarters
Which of the following is the domain of the function based on the input-output table below?
Answer:
C
Step-by-step explanation:
The domain is the left side of the table
A square has a perimeter of 80 m. What is the length of each side?
Answer:
20 m
[tex]p = 4a \: thus \: a = p \div 4 = 80 \div 4 = 20 \: m[/tex]
Answer:
20
Step-by-step explanation:
P=4L
80=4L
L=80/4
L=20m
Find the missing side of triangle
Final Answer:
x = 20
Step-by-step explanation:
we'll be using the pythagorean theorem method, in this triangle the missing letter is a.
formula: [tex]a=\sqrt{c^2-b^2}[/tex]
a = x
b = 21
c = 29
a = [tex]\sqrt{29^2-21^2}[/tex]
a = [tex]\sqrt{841-441}[/tex] (note: 29² = 29 × 29 = 841 and 21² = 21 × 21 = 441)
a = [tex]\sqrt{400}[/tex]
a = 20
x = 20
Form a third-degree polynomial function with real coefficients, with leading coefficient 1, such that 6+i and 5 are zeros.
Answer:
A third-degree polynomial can be written as:
f(x) = a*x^3 + b*x^2 + c*x + d
Where the leading coefficient is a, and all the coefficients are real.
If we know that the leading coefficient is 1, then the equation becomes:
f(x) = x^3 + b*x^2 + c*x + d
Now, we also know that:
(6 + i) and 5 are zeros.
This means that:
(6 + i)^3 + b*(6 + i)^2 + c*(6 + i) + d = 0
remember that:
i^2 = - 1
This is equal to:
(6 + i)*(36 + 2*6*i + i^2) + b*(36 + 2*6*i + i^2) + c*(6 + i) + d = 0
(6 + i)*(35 + 12i) + b*(35 + 12i) + c*(6 + i) + d =0
(210 + 35i + 72i - 12) + b*(35 + 12i) + c*(6 + i) + d = 0
198 + 107i + b*(35 + 12i) + c*(6 + i) + d = 0
sparating in real and imaginary part, we get:
(198 + b*35 + c*6 + d) + (107 + b*12 + c)*i = 0
Then each parentheses needs to be zero, this means that:
198 + b*35 + c*6 + d = 0
107 + b*12 + c = 0
Knowing that 5 is another zero, we have:
5^3 + b*5^2 + c*5 + d = 0
125 + b*25 + c*5 + d = 0
Then we have a system of 3 equations and 3 variables:
198 + b*35 + c*6 + d = 0
107 + b*12 + c = 0
125 + b*25 + c*5 + d = 0
To solve this, we first need to isolate one of the variables in one of the equations.
Let's isolate d in the last one, so we get:
d = -125 - b*25 - c*5
now we can replace this in the first equation to get:
198 + b*35 + c*6 + d = 0
198 + b*35 + c*6 + ( -125 - b*25 - c*5) = 0
70 + b*10 + c = 0
So now we have two equations:
70 + b*10 + c = 0
107 + b*12 + c = 0
Again, now we can isolate the one variable in one of the equations, this time let's isolate c in the first one.
c = -70 - b*10
now we can replace this in the other equation:
107 + b*12 + c = 0
107 + b*12 + (-70 - b*10) = 0
38 + b*2 = 0
now we can solve this for b
b*2 = -38
b = -38/2 = -19
Now, with the equation c = -70 - b*10 we can find the value of c.
c = -70 - b*10 = c = -70 - (-19)*10 = 120
And with the equation d = -125 - b*25 - c*5
we can find the value of d:
d = -125 - b*25 - c*5 = -125 - (-19)*25 - (120)*5 = -250
Then we have:
a = 1
b = -19
c = 120
d = -250
The eqation is:
f(x) = 1*x^3 - 19*x^2 + 120*x - 250
What is the difference quotient for the function f(x) = 8/ 4x + 1
Answer:
Last option (counting from the top)
Step-by-step explanation:
For a given function f(x), the difference quotient is:
[tex]\frac{f(x + h) - f(x)}{h} = \frac{1}{h}*(f(x + h) - f(x))[/tex]
In this case, we have:
[tex]f(x) = \frac{8}{4x + 1}[/tex]
Then the difference quotient will be:
[tex]\frac{1}{h}*( \frac{8}{4*(x + h) + 1} - \frac{8}{4x + 1})[/tex]
Now we should get a common denominator.
We can do that by multiplying and dividing each fraction by the denominator of the other fraction, so we will get:
[tex]\frac{1}{h}*( \frac{8}{4*(x + h) + 1} - \frac{8}{4x + 1}) = \frac{1}{h}*(\frac{8*(4x + 1)}{(4(x + h) +1 )*(4x + 1)} - \frac{8*(4(x + h) + 1)}{(4(x + h) +1 )*(4x + 1)})[/tex]
Now we can simplify that to get:
[tex]\frac{1}{h}*\frac{8*(4x + 1) - 8*(4(x + h) + 1)}{(4(x + h) +1 )*(4x + 1)}} = \frac{1}{h}*\frac{-32h}{(4(x + h) +1 )*(4x + 1)}} = \frac{-32}{(4(x + h) +1 )*(4x + 1)}}[/tex]
Then the correct option is the last one (counting from the top)
Customers arrive at a movie theater at the advertised movie time only to find that they have to sit through several previews and prepreview ads before the movie starts. Many complain that the time devoted to previews is too long. A preliminary sample conducted by The Wall Street Journal showed that the standard deviation of the amount of time devoted to previews was 4 minutes. Use that as a planning value for the standard deviation in answering the following questions. Round your answer to next whole number. a. If we want to estimate the population mean time for previews at movie theaters with a margin of error of seconds, what sample size should be used
Answer:
[tex]n=35[/tex]
Step-by-step explanation:
From the question we are told that:
Standard Deviation [tex]\sigma=4min[/tex]
Let
[tex]CI=95\%[/tex]
Since
Significance level [tex]\alpha[/tex]
[tex]\alpha =1-CI[/tex]
[tex]\alpha =1-0.95[/tex]
Therefore
[tex]Z_{\alpha/2}=Z_{0.025[/tex]
[tex]Z_{\alpha/2}}=1.96[/tex]
Generally the equation for Sample size is mathematically given by
[tex]n = (Z_{\alpha/2}* \frac{\sigma}{E})^2[/tex]
[tex]n= \frac{1.96 * 3}{1}^2[/tex]
[tex]n=35[/tex]
what is the side length of the square in cm
Answer:
8.4 cm^2
Step-by-step explanation:
The area of the rectangle is
A = lw
A = 3x *5x = 15x^2
126 = 15x^2
126/ 15 =15x^2/15
42/5 = x^2
We want to find the area of the square
A = l*w
A = x*x
A = x^2 = 42/5 = 8.4 cm^2
this graph represents the function f(x)=4sin(x) which statement is true about this function
Answer:
A
Step-by-step explanation:
The function is increasing in the interval in A because as the x-values increase so do the y-values on the graph, which can be shown by the graph sloping upwards at that specific section.
The graph of a function is increasing on the interval (3π/2, 2π) option (A) is correct.
What is trigonometry?Trigonometry is a branch of mathematics that deals with the relationship between sides and angles of a right-angle triangle.
We have given a graph of a trigonometric function,
As we know, the trigonometric function is sinusoidal in nature, and it has a domain of all real numbers and lies between the [a, a]where is the amplitude of the function.
The trigonometric ratio is defined as the ratio of the pair of a right-angled triangle.
From the graph, the function is increasing from 3π/2 to 2π
The graph slopes upward at that particular segment, indicating that the function is increasing in the interval in A as the x-values increase and the y-values on the graph follow suit.
Thus, the graph of a function is increasing on the interval (3π/2, 2π) option (A) is correct.
Learn more about trigonometry here:
brainly.com/question/26719838
#SPJ5
Sarah took the advertising department from her company on a round trip to meet with a potential client. Including Sarah, a total of 8 people took the trip. She was able to purchase coach tickets for $300 and first-class tickets for $1060. She used her total budget for airfare for the trip, which was $6960. How many first-class tickets did she buy?
How many coach tickets did she buy?
number of first-class tickets bought nothing number of coach tickets bought nothing
Answer:
She bought 6 first class tickets and 1 coach ticket
Step-by-step explanation:
1060(6)= 6360 and 6960-6360=300 and 300 is the price for a coach ticket.
help me with this math question pls!! Find the value of x
Answer:
x = 3
Step-by-step explanation:
using the mid segment formula since quadrilateral WZYP is similar to that of MZYT, this is expressed as;
29 = 1/2(23 +11x+2)
Cross multiply
2(29) = 23+11x+2
58 = 25 + 11x
11x = 58 - 25
11x = 33
Divide both sides by 11
11x/11 = 33/11
x = 3
Hence the value of x is 3
Need help asap, thanks :)
Answer:
937
425
Step-by-step explanation:
9 is the square of 3
7 is 1 more than 6, the double of 3
4 is the square of 2
5 is 1 more than 4, 2x 2
Is there more?
Answer:
425
Step-by-step explanation:
1st = 2^2
3rd = 2*2 + 1
3+3+3+3+3+3+3+333333
Answer:
333354
Step-by-step explanation:
Simplify the expression.
Answer:
333,354
Step-by-step explanation:
First, we add the 3's. And get 21.
333,333 + 21 = 333,354
8
20
х
18
Solve for x.
O A) 40
B) 38
C) 45
D) 46
Answer:
its A
Step-by-step explanation:
Is the following number rational or irrational?
-117
Choose 1 answer:
Rational
Irrational
Answer:
-117 is irrational number
Answer:
Irrational
Step-by-step explanation:
Irrational number can't be written as a faction, -11pie can't be written as a fraction. Therefore it is a irrational number.
Given the following coordinates complete the reflection transformation.
Answer:
For a general point (x, y), a reflection across the line x = a transforms the point into:
(a + (a - x), y) = (2a - x, y)
So if we first do a reflection across the line x = 1, the new point will be:
(2*1 - x, y) = (2 - x, y)
And if we now do a reflection across the line x = 3, the new point will be:
(2*3 - (2 - x), y) = (6 - 2 + x, y) = (4 + x, y)
Now that we have the general formula we can solve the question.
For the point (-5, 2)
The generated point after the reflections is:
(4 + (-5), 2) = (-1, 2)
For the point (-1, 5)
The generated point after the reflections is:
(4 + (-1), 5) = (3, 5)
For the point (0, 3)
The generated point after the reflections is:
(4 +0, 3) = (4, 3)
Find the measures of
Answer:
Step-by-step explanation:
Measure of an inscribed angle intercepted by an arc is half of the measure of the arc.
From the picture attached,
m(∠A) = [tex]\frac{1}{2}m(\text{arc BD})[/tex]
= [tex]\frac{1}{2}[m(\text{BC})+m(\text{CD}][/tex]
= [tex]\frac{1}{2}[55^{\circ}+145^{\circ}][/tex]
= 100°
m(∠C) = [tex]\frac{1}{2}[(360^{\circ})-m(\text{arc BCD})][/tex]
= [tex]\frac{1}{2}(360^{\circ}-200^{\circ})[/tex]
= 80°
m(∠B) + m(∠D) = 180° [ABCD is cyclic quadrilateral]
115° + m(∠D) = 180°
m(∠D) = 65°
m(arc AC) = 2[m(∠D)]
m(arc AB) + m(arc BC) = 2(65°) [Since, m(arc AC) = m(arc AB) + m(arc BC)]
m(arc AB) + 55° = 130°
m(arc AB) = 75°
m(arc ADC) = 2(m∠B)
m(arc AD) + m(arc DC) = 2(115°)
m(arc AD) + 145° = 230°
m(arc AD) = 85°
I need help I don't understand this.
9514 1404 393
Answer:
∠4 = 108°
Step-by-step explanation:
Angles 2 and 4 together form a "linear pair". That is, the sum of them is 180°, a "straight angle." They are supplementary.
∠4 = 180° -∠2 = 180° -72°
∠4 = 108°
Which statement is true? O A. The number 23 is prime, but 36 is composite. B. The number 33 is prime, but 42 is composite. OC. The number 21 is prime, but 25 is composite. D. The number 27 is prime, but 39 is composite.
Answer: A. The number 23 is prime, but 36 is composite.
=====================================================
Explanation:
Let's go through the possible answer choices
A) This is true because 23 only has the factors 1 and 23. So that's why 23 is prime. We can say 36 is composite since 2 is a factor, ie 36 = 2*18.B) This is false because 33 is not prime. Note how 33 = 3*11, showing that 3 is a factor of 33.C) Similar to B, the statement "21 is prime" is false. Note how 21 = 3*7.D) Like the other false statements, 27 is not prime because 27 = 3*9.23 is indeed prime, and 36 is indeed composite.
33 is composite, and 42 is indeed composite.
21 is composite, and 25 is composite as well
27 is not prime, and 39 is composite.
Primes have only 2 factors: 1 and themselves.
And 33, 21 and 27 definitely have more than 2 factors. Hope this helps!
~Just a joyful teen
[tex]GraceRosalia[/tex]
can she get some help
Answer:
-55
Step-by-step explanation:
the sqeuence seems to be subtracting by 2 everytime.
so it will be -1,-3,-5,-7,-9,-11,-13,-15,-17,-19,-21,-23,-25,-27,-29..
the answer will be 27*-2(-54) -1(because we start at -1 , not 0)
Answer:
Step-by-step explanation:
the formula for an arithmetic sequence that is explicit is
[tex]a_n=a_1+d(n-1)[/tex] where [tex]a_1[/tex] is the first term (so -1), and d is the common difference (-2). n is the number position in the sequence. As soon as we find the formula or model for this sequence we can find any number term we want. Filling in the formula:
[tex]a_n=-1-2(n-1)[/tex] and we'll clean that up just a bit:
[tex]a_n=-1-2n+2[/tex] (I just distributed through the parenthesis) and a bit more to
[tex]a_n=-2n+1[/tex] and if we want the 21st term, fill in a 21 for n:
[tex]a_{21}=-2(21)+1[/tex] and
[tex]a_{21}=-42+1[/tex] so
[tex]a_{21}=-41[/tex]
Chase buys a bag of cookies that contains 6 chocolate chip cookies, 6 peanut butter cookies, 6 sugar cookies and 6 oatmeal cookies. What is the probability that Chase randomly selects a peanut butter cookie from the bag, eats it, then randomly selects a chocolate chip cookie
Answer:
0.0652173
Step-by-step explanation:
Given that :
6 chocolate chip cookies
6 peanut butter cookies
6 sugar cookies
6 oatmeal cookies
Total number of cookies purchased = (6+6+6+6) = 24
Probability, P= required outcome /total possible outcomes
This is a selection without replacement probability problem :
P(peanut butter cookies) = 6/24 = 1/4
Then ;
P(chocolate chip cookie) = 6/23
Hence,
P(peanut butter cookies then chocolate chip cookie) = 1/4 * 6/23 = 0.0652173
Which algebraic expression represents the phrase "six less than a number"?
Answer:
[tex]x-6[/tex]
Step-by-step explanation:
We can let the 'number' in the expression be equal to [tex]x[/tex]. Something 6 less than x would x minus 6, or [tex]x-6[/tex].
Answer:
x-6
Step-by-step explanation:
Let the number be x
Less than means subtract from
x-6
find the slope of the tangent line of the curve r = cos (3theta) at theta = pi / 3
The slope of the tangent line to the curve at a point (x, y) is dy/dx. By the chain rule, this is equivalent to
dy/dθ × dθ/dx = (dy/dθ) / (dx/dθ)
where y = r(θ) sin(θ) and x = r(θ) cos(θ). Then
dy/dθ = dr/dθ sin(θ) + r(θ) cos(θ)
dx/dθ = dr/dθ cos(θ) - r(θ) sin(θ)
Given r(θ) = cos(3θ), we have
dr/dθ = -3 sin(3θ)
and so
dy/dx = (-3 sin(3θ) sin(θ) + cos(3θ) cos(θ)) / (-3 sin(3θ) cos(θ) - cos(3θ) sin(θ))
When θ = π/3, we end up with a slope of
dy/dx = (-3 sin(π) sin(π/3) + cos(π) cos(π/3)) / (-3 sin(π) cos(π/3) - cos(π) sin(π/3))
dy/dx = -cos(π/3) / sin(π/3)
dy/dx = -cot(π/3) = -1/√3
SOMEONE HELP ME PLEASE
Decide if the following scenario involves a permutation or combination. Then find the number of possibilities.
There are 50 applicants for two Systems Engineer positions at a local company.
Answer:
you did not provide the numbers to answer any question...
but the formula that you want is probably this one
Combination Formula nCr=n!(n−r)!r!
Step-by-step explanation:
for f(x)= -4x + 5, find f(x) when x = -2.
Answer:
13
Step-by-step explanation:
f(x)= -4x + 5
Let x = -2
f(-2) = -4(-2) +5
= 8+5
= 13
Step-by-step explanation:
x = - 2
f ( x ) = - 4x + 5
f ( - 2 )
= - 4 ( - 2 ) + 5
= 8 + 5
= 13
What is the sum of the polynomials?
(7x3 – 4x2) + (2x3 – 4x2)
9x3 – 8x2
5x3
5x3 – 8x2
9x3
Answer:
9x3 - 8x2
Step-by-step explanation:
7x3+2x3 = 9x3
-4x2+(-4x2) = -8x2
Answer:
D
Step-by-step explanation:
Find the slope of the line
Answer:
The slope is 0.84
Step-by-step explanation:
View solution from above uploaded photos
4x^2-12x+9.
4x^2+4x+1.,
1+12x+36^2
Answer:
Step-by-step explanation: