Answer:
a) [tex]h=25m[/tex]
b) [tex]v=19.8m/sec[/tex]
Explanation:
From the question we are told that:
Height [tex]h=25m[/tex]
Bounce Height [tex]h'=20m[/tex]
Generally the Kinematic equation is mathematically given by
[tex]V=\sqrt{2gh}\\\\V=\sqrt{2*9.81*25}[/tex]
[tex]V=22.1m/sec[/tex]
Therefore Height
[tex]h=\frac{V^2}{2g}\\\\h=\frac{22.1^2}{2*9.81}[/tex]
[tex]h=25m[/tex]
b)
Generally the Kinematic equation is mathematically given by
[tex]v^2=2ah[/tex]
[tex]v^2=2*9.8*20[/tex]
[tex]v=\sqrt{2*9.8*20}[/tex]
[tex]v=19.8m/sec[/tex]
một hòn đá có khối lượng 5kg bay với vận tốc 72kg/h . động lượng của hòn đá là
Answer:
Momentum = 100 Kgm/s
Explanation:
Given the following data;
Speed = 72 km/h
Mass = 5 kg
To find the momentum of the stone;
First of all, we would have to convert the value of speed to meter per seconds.
Conversion:
72 km/h to m/s = (72 * 1000)/3600 = 20 m/s
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
Substituting the values into the formula, we have;
Momentum = 5 * 20
Momentum = 100 Kgm/s
A motorcycle moving with velocity and 30m/s accelerate with 4m/s2 to gain velocity of 6mls. calculate its time to gain that velocity
Using first equation of kinematics
[tex]\boxed{\sf v=u+at}[/tex]
[tex]\\ \sf\longmapsto t=\dfrac{v-u}{a}[/tex]
[tex]\\ \sf\longmapsto t=\dfrac{30-6}{4}[/tex]
[tex]\\ \sf\longmapsto t=\dfrac{24}{4}[/tex]
[tex]\\ \sf\longmapsto t=6s[/tex]
how do atoms lose electrons ?
Answer:
Explanation:
By being close to an atom that will gladly take the electrons being offered.
Suppose you are talking about Be. It is in the second column. It has two outer electrons that can be given away. It will not give away one of the two remaining electrons because they are too close to the + nucleus.
Along comes a Fluorine atom. It has 7 electrons in its outer ring. The chemistry of the situation allows it to take on one of the two electrons Be is offering. It is all a matter of charges and attractions.
Another Fluorine atom will take on the remaining electron from the Be. The outer ring cannot take on more than 1 electron, but that is enough
3. There is a bell at the top of a tower that is 45 m high. The bell weighs 64 kg. The
bell has joules of potential energy.
Answer:It has 8550 j energy