Solve the following equation for n. Be sure to take into account whether a letter is capitalized or not.
t=n-r

Answers

Answer 1

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

[tex]n = t + r[/tex]

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

[tex]\boxed{\text{Solving for 'n'...}}\\\\t = n - r\\----------\\\rightarrow t + r = n -r + r\\\\\rightarrow t+r = n\\\\\rightarrow \boxed{n=t+r}[/tex]

⸻⸻⸻⸻

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  


Related Questions

PLease Help! I will give you the brainiest and a lot of points

A survey of 104 college students was taken to determine the musical styles they liked. Of​ those, 22 students listened to​ rock, 23 to​ classical, and 24 to jazz.​ Also, 10 students listened to rock and​ jazz, 8 to rock and​ classical, and 8 to classical and jazz.​ Finally, 6 students listened to all three musical styles. Construct a Venn diagram and determine the cardinality for each region. Use the completed Venn Diagram to answer the following questions.

a. How many listened to only rock​ music?
n​(only ​rock)

b. How many listened to classical and​ jazz, but not​ rock?
n​(classical and​ jazz, not ​rock)

c. How many listened to classical or​ jazz, but not​ rock?
n​(classical or​ jazz, not ​rock)

d. How many listened to music in exactly one of the musical​ styles?
n​(exactly one ​style)

e. How many listened to music in exactly two of the musical​ styles?
n​(exactly two ​styles)

f. How many did not listen to any of the musical​ styles?
n​(none)

Answers

Answer:

A. 22

B. 8

C. 23 + 24

D. 22 + 23 + 24

E. 8 + 8 + 10

F. 104 - (sum of all the given numbers) = 3

Consider a study conducted to determine the average protein intake among an adult population. Suppose that a confidence level of 85% is required with an interval about 10 units wide . If a preliminary data indicate a standard deviation of 20g . What sample of adults should be selected for the study?​

Answers

Answer:

With an ageing population, dietary approaches to promote health and independence later in life are needed. In part, this can be achieved by maintaining muscle mass and strength as people age. New evidence suggests that current dietary recommendations for protein intake may be insufficient to achieve this goal and that individuals might benefit by increasing their intake and frequency of consumption of high-quality protein. However, the environmental effects of increasing animal-protein production are a concern, and alternative, more sustainable protein sources should be considered. Protein is known to be more satiating than other macronutrients, and it is unclear whether diets high in plant proteins affect the appetite of older adults as they should be recommended for individuals at risk of malnutrition. The review considers the protein needs of an ageing population (>40 years old), sustainable protein sources, appetite-related implications of diets high in plant proteins, and related areas for future research.

A rational expression is​ _______ for those values of the​ variable(s) that make the denominator zero.

Answers

9514 1404 393

Answer:

  undefined

Step-by-step explanation:

A rational expression is undefined when its denominator is zero.

Can I pleaseee have help with all 3 parts of this ? Thank you :D

Answers

Answer:

Part A:

the first step is to work out the brackets by multiplying the coefficients outside the brackets by everything in the brackets.

Part B:

5(3x-4)=-2(6x-9)

15x-20=-12x+18

Part C:

15x-20=-12x+18

15x+12x=18+20

27x/27=38/27

x=1.407

I hope this helps

180 °
X °
26 °

X = ? °

Answers

Answer:

X = 64

Step-by-step explanation:

All of the angles are right angles (because of the square at one of the angles shown above). This means each angle equals 90 degrees. If X + 26 = 90, then X = 64 because 90 - 26 = 64. I hope this helps!

Answer: X = 64

Step-by-step explanation:

A square prism and a cylinder have the same height. The area of the cross-section of the square prism is 628 square units, and the area of the cross-section of the cylinder is 200π square units. Based on this information, which argument can be made?
The volume of the square prism is one third the volume of the cylinder.
The volume of the square prism is half the volume of the cylinder.
The volume of the square prism is equal to the volume of the cylinder.
The volume of the square prism is twice the volume of the cylinder.

Answers

Answer:

C. The volume of the square prism is equal to the volume of the cylinder.

Step-by-step explanation:

I took the test and it was right

What is the volume of the cylinder below?

Answers

Answer:

A

Step-by-step explanation:

v=πr2h

r=(3)²* 5

45π unit³

PLZ HELP QUESTION IN PICTURE

Answers

Answer: [tex]-\frac{9}{2}, -4, -3, -\frac{11}{4}, -2[/tex]

Step-by-step explanation:

slope = m

[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{-7-9}{-1-(-5)}=-4[/tex]

y = mx + b, (-5,9), (-1,-7), m = -4; (does not matter which point you plug in)

[tex]y=mx+b\\9=-4(-5)+b\\9=20+b\\b=-11\\y=-4x-11[/tex]

(now plug in each y value into the equation above)

[tex]7=-4x-11\\18=-4x\\x=-\frac{9}{2}\\\\5=-4x-11\\16=-4x\\x=-4\\\\1=-4x-11\\12=-4x\\x=-3\\\\0=-4x-11\\11=-4x\\x=-\frac{11}{4} \\\\-3=-4x-11\\8=-4x\\x=-2[/tex]

5 oranges weigh 1.5 kg, 8 apples weigh 2 kg. What would be the total weight of 3 apples and 4 oranges?

Answers

Answer: oranges 1.2 Kg and apples 0.75 Kg.

Step-by-step explanation:

Oranges (4)(1.5)/5

Apples (3)(2)/8

In how many ways can 10 people be divided into three groups with 2, 3, and 5 people respectively?

Answers

Answer:

2100

Step-by-step explanation:

In how many ways can a group of 10 people be divided into three groups consisting of 2,3, and 5 people?

First, you need to choose 4 people to fill the first group.

The number of ways is (104) which equals to 210.

Then, pick 3 more people out of the remaining 6 to be in the second group. And then, pick 3 more out of the remaining 3.

However, we need to divide it by 2, since we don’t really care on the order of selection of group.

(63)(33)/2=10

So, there are 210 x 10 = 2100 ways

Answer:

hmmm I read JeremyBrooks answer... I think that it might be different...

i think it is 2520

of the 10 you first choose 2

10 choose 2 = 45 ways

in each of the 45 "chooses" you now

pick a group of 3 of the 8 left

8 choose 3 = that is 56

of the five people left you choose 5

5 choose 5 = 1

so the possibilities are 45*56 * 1 = 2520

Step-by-step explanation:

What is the x intercept of the graph that is shown below? Please help me

Answers

Answer:

(-2,0)

Step-by-step explanation:

The x intercept is the value when it crosses the x axis ( the y value is zero)

x = -2 and y =0

(-2,0)

Solve the equation by factoring: 5x^2 - x = 0

Answers

Answer:

Step-by-step explanation:

x = 0, 1/5

Bà B đến ngân hàng ngày 05/05/2019 để gửi tiết kiệm 250 triệu đồng thời hạn 3 tháng, lãi suất 7%/năm, NH trả lãi định kỳ hàng tháng (kỳ lĩnh lãi đầu tiên là ngày 05/05/2019). Đến ngày 05/08/2019, bà B tất toán sổ tiết kiệm trên. Tính số tiền bà B nhận được vào ngày đáo hạn sổ tiết kiệm là? (Cơ sở công bố lãi suất là 365 ngày)

Answers

Answer:

Ask in English then I can help u

Graph the complex numbers in the complex plane

Answers

9514 1404 393

Answer:

  see attached

Step-by-step explanation:

The imaginary value is plotted on the vertical axis in the same way that the y-coordinate would be for an ordered pair (x, y). Similarly, the real value is plotted on the horizontal axis.

__

I find it helpful to think of the complex number a+bi as equivalent to the ordered pair (x, y) = (a, b) when it comes to graphing.

[tex]\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx[/tex]

Answers

First integrate the indefinite integral,

[tex]\int(1-x^2)^{3/2}dx[/tex]

Let [tex]x=\sin(u)[/tex] which will make [tex]dx=\cos(u)du[/tex].

Then

[tex](1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u)[/tex] which makes [tex]u=\arcsin(x)[/tex] and our integral is reshaped,

[tex]\int\cos^4(u)du[/tex]

Use reduction formula,

[tex]\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du[/tex]

to get,

[tex]\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du[/tex]

Notice that,

[tex]\cos^2(u)=\frac{1}{2}(\cos(2u)+1)[/tex]

Then integrate the obtained sum,

[tex]\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du[/tex]

Now introduce [tex]s=2u\implies ds=2du[/tex] and substitute and integrate to get,

[tex]\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du[/tex]

[tex]\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C[/tex]

Substitute 2u back for s,

[tex]\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C[/tex]

Substitute [tex]\sin^{-1}[/tex] for u and simplify with [tex]\cos(\arcsin(x))=\sqrt{1-x^2}[/tex] to get the result,

[tex]\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}[/tex]

Let [tex]F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C[/tex]

Apply definite integral evaluation from b to a, [tex]F(x)\Big|_b^a[/tex],

[tex]F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}[/tex]

Hope this helps :)

Answer:[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]General Formulas and Concepts:

Pre-Calculus

Trigonometric Identities

Calculus

Differentiation

DerivativesDerivative Notation

Integration

IntegralsDefinite/Indefinite IntegralsIntegration Constant C

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                    [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

U-Substitution

Trigonometric Substitution

Reduction Formula:                                                                                               [tex]\displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution (trigonometric substitution).

Set u:                                                                                                             [tex]\displaystyle x = sin(u)[/tex][u] Differentiate [Trigonometric Differentiation]:                                         [tex]\displaystyle dx = cos(u) \ du[/tex]Rewrite u:                                                                                                       [tex]\displaystyle u = arcsin(x)[/tex]

Step 3: Integrate Pt. 2

[Integral] Trigonometric Substitution:                                                           [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Rewrite:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Simplify:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du[/tex][Integral] Reduction Formula:                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b[/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du[/tex][Integral] Reduction Formula:                                                                          [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Reverse Power Rule:                                                                     [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b[/tex]Back-Substitute:                                                                                               [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b[/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Rewrite:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

I need help in understanding and solving quadratic equations using the quadratic formula

x^2+8x+1=0​

Answers

Answer:

Exact Form: -4⊥√15

Decimal Form:

0.12701665

7.87298334

write your answer in simplest radical form​

Answers

9514 1404 393

Answer:

  4√2

Step-by-step explanation:

In a 30°-60°-90° triangle, the ratio of side lengths is ...

  1 : √3 : 2

That is, the hypotenuse (c) is double the short side (2√2).

  c = 4√2

What is the minimum perimeter of a rectangle with an area of 625 mm^2

Answers

130 mm^2 your welcome

I need help answering this question thank guys

Answers

Multiply exponents: 1/6 x 6 = 1
You get: 12^1 which = 12
The answer for this question is D. 12

There are 52 cards in a deck, and 13 of them are hearts. Four cards are dealt, one at a time, off the top of a well-shuffled deck. What is the percent chance that a heart turns up on the fourth card, but not before

Answers

Answer:

10.97%

Step-by-step explanation:

There are 52 cards.

13 of them, are hearts.

Then

52 - 13 = 39 cards are not hearts.

4 cards are drawn, we want to find the percent chance that the fourth card is a heart card, but no before.

So the first card can't be a heart card.

because the deck is well-shuffled, all the cards have the same probability of being drawn.

Then the probability of not getting a heart card, is equal to the quotient between the number of non-heart cards (39) and the total number of cards (52), then the probability is:

p₁ = 39/52

The second card also can't be a heart card, the probability is calculated in the same way than above, but now there are 38 non-heart cards and a total of 51 cards (because one card was already drawn) then the probability here is:

p₂ = 38/51

For the third card the reasoning is similar to the two above cases, here the probability is:

p₃ = 37/50

The fourth card should be a hearts card, the probability is computed in the same way than above, as the quotient between the number of heart cards in the deck (13) and the total number of cards in the deck (now there are 49 cards)

then the probability is:

p₄ = 13/49

The joint probability (the probability of these 4 events happening together) is equal to the product between the individual probabilities:

P = p₁*p₂*p₃*p₄

P = (39/52)*(38/51)*(37/50)*(13/49) = 0.1097

The percent chance is the above number times 100%

Percent =  0.1097*100% = 10.97%

number
5. Thesum of a two-digit number a
(CBSE 2002]
Find the numbers.
If the two digits differ by 2, find the number. I
6. The sum of two numbers is 1000 and the difference between their squares is 256000.
7. The sum of a two digit number and the number obtained by reversing the order of its
digits is 99. If the digits differ by 3, find the number.
8. A two-digit number is 4 times the sum of its digits. If 18 is added to the number, the digits
are reversed. Find the number.
(CBSE 2001C]
[CBSE 2001C]
9. A two-digit number is 3 more than 4 times the sum of its digits. If 18 is added to the
(CBSE 2001C]
number, the digits are reversed. Find the number.
10. A two-digit number is 4 more than 6 times the sum of its digits. If 18 is subtracted from
the number, the digits are reversed. Find the number.
11. A two-digit number is 4 times the sum of its digits and twice the product of the digits.
[CBSE 2005]
Find the number.
[CBSE 2005]
12. A two-digit number is such that the product of its digits is 20. If 9 is added to the number,
the digits interchange their places. Find the number.
13. The difference between two numbers is 26 and one number is three times the other. Find
them.
14. The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the​

Answers

Answer:

Let the numbers are x and y

According to the question

⇒x+y=1000.....eq1⇒x 2 −y 2

=256000∵x 2 −y 2

=(x+y)(x−y)

⇒1000∗(x−y)=256000

⇒x−y=256.....eq2

Adding eq1 and eq2

⇒2x=1256⇒x=628

Put the value of x in eq1

⇒628+y=1000⇒y=372

The numbers are 628 and 372

Hi I'm From PHILIPPINES

I'm here to help USA users like you



Write –0.38 as a fraction.

Answers

Answer:

-19/50

Step-by-step explanation:

Answer:

-19/50

Step-by-step explanation:

Answer pleaseeeeeeee

Answers

Answer:

17x^2-9x-9 -->B

Step-by-step explanation:

7x^2 -12x +3 +10x^2+3x-12

Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 6y = -42

Answers

Answer:

y = -1/2x -7

Step-by-step explanation:

3x + 6y = -42

Slope intercept form is

y = mx+b where m is the slope and b is the y intercept

Subtract 3x from each side

3x-3x+6y = -3x-42

6y = -3x-42

Divide each side by 6

6y/6 = -3x/6 - 42/6

y = -1/2x -7

Find the missing side of the triangle

Answers

Answer:

x = 2[tex]\sqrt{5}[/tex]

Step-by-step explanation:

Pytago:

[tex]2^2 + 4^2 = x^2\\x = \sqrt{2^2 + 4^2} \\x = 2\sqrt{5}[/tex]

Answer:

4.47

Step-by-step explanation:

x²= 2² + 4²

x² = 4 + 16

x²= 20

x = √20

x= 4.47

.Part D. Analyze the residuals.
Birth weight
(pounds)
Adult weight
(pounds)
Predicted
adult weight
Residual
1.5
10

3
17

1
8

2.5
14

0.75
5

a. Use the linear regression equation from Part C to calculate the predicted adult weight for each birth weight. Round to the nearest hundredth. Enter these in the third column of the table.

b. Find the residual for each birth weight. Round to the nearest hundredth. Enter these in the fourth column of the table.

c. Plot the residuals.

d. Based on the residuals, is your regression line a reasonable model for the data? Why or why not? ​

Answers

Answer:

Hi there! The answers will be in the explanation :D

Step-by-step explanation:

a) I'll attach a doc for the table so it'll basically answer a and b.

c) I'll also attach the graph.

d) I'm not entirely sure for this question, but I'll do my best to answer it correctly for you. I would say no, because we can see that the residuals are all positive, but the graph we're looking is going down which means it's negative. We can also see the table is increasing a bit so it doesn't really make any sense...

Hope this helped you!

A student majoring in accounting is trying to decide on the number of firms to which he should apply. Given his work experience and grades, he can expect to receive a job offer from 70% of the firms to which he applies. The student decides to apply to only four firms.
(a) What is the probability that he receives no job offer?
(b) How many job offers he expects to get?
(c) What is the probability that more than half of the firms he applied do not make him any offer?
(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.
(e) What is the probability of him securing more than 3 offers?

Answers

Answer:

a) 0.0081 = 0.81% probability that he receives no job offer

b) He expects to get 2.8 job offers.

c) 0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.

d) Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.

e) 0.2401 = 24.01% probability of him securing more than 3 offers.

Step-by-step explanation:

For each application, there are only two possible outcomes. Either he gets an offer, or he does not. The probability of getting an offer for a job is independent of any other job, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

He can expect to receive a job offer from 70% of the firms to which he applies.

This means that [tex]p = 0.7[/tex]

The student decides to apply to only four firms.

This means that [tex]n = 4[/tex]

(a) What is the probability that he receives no job offer?

This is [tex]P(X = 0)[/tex]. So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]

0.0081 = 0.81% probability that he receives no job offer.

(b) How many job offers he expects to get?

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

In this question:

[tex]E(X) = 4(0.7) = 2.8[/tex]

He expects to get 2.8 job offers.

(c) What is the probability that more than half of the firms he applied do not make him any offer?

Less than 2 offers, which is:

[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]

So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]

[tex]P(X = 1) = C_{4,1}.(0.7)^{1}.(0.3)^{3} = 0.0756[/tex]

Then

[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.0081 + 0.0756 = 0.0837[/tex]

0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.

(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.

Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.

(e) What is the probability of him securing more than 3 offers?

Between 4 and n, since n is 4, 4 offers, so:

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 4) = C_{4,4}.(0.7)^{4}.(0.3)^{0} = 0.2401[/tex]

0.2401 = 24.01% probability of him securing more than 3 offers.

Which fraction is equivalent to 3/-5? Please help ASAP

Answers

Answer:

-3/5

Step-by-step explanation:

3/ -5 is also equal to -3/5  or - (3/5)

A photographer bought 35 rolls for $136.44 what was the price of one roll

Answers

Answer:

$3.90

Step-by-step explanation:

136.44/35= (rounded tot the nearest hundredth) $3.90

Answer:

136.44÷36 =3.79

3.79×36=136.44

Step-by-step explanation:

So one ball cost 3. 79

For f(x) = 4x2 + 13x + 10, find all values of a for which f(a) = 7.

the solution set is ???

Answers

Answer:

f(7)=109

Step-by-step explanation:

Since f(a)=7 then you just imput 7 on each x like this f(7)=8+13(7)+10= 109

Other Questions
PLEASE PLEASE HELP PLEASE PLEASE HELP ME WITH THIS QUESTION PLEASE HELP PLEASE In the economy of Nocoin bank deposits are $ billion. Bank reserves are $ billion, of which two thirds are deposits with the central bank. Households and firms hold $ billion in bank notes. There are no coins. Calculate the monetary base and the quantity of money. Calculate the banks' desired reserve ratio and the currency drain ratio (as percentages). f(x) = (x - 5) (2x - 7) (7x - 3) has zeros at x = -3.5, x = 3/7, and x = 5. what is the sign of f on the interval 3/7 < x < 5 ? 1. f is always positive on the interval.2. f is always negative on the interval.3. f is sometimes positive and sometimes negative on the interval. Verify the identity.[tex]cot (x-\frac{\pi }{2})=-tan[/tex] Put the following equation of a line into slope-intercept form, simplifying allfractions.3x 9y = -72 Brianna's Bakery offers 3 flavors of bagels. Customers can choose from plain, cinnamon, or blueberry bagels. Yesterday, a customer ordered 144 bagels for a company meeting. The order was for twice as many blueberry bagels as plain bagels and 3 times as many cinnamon bagels as blueberry bagels.How many cinnamon bagels did the customer order Write the composite function in the form f(g(x)). [Identify the inner function u = g(x) and the outer function y = f(u).] $ y = e^{{\color{red}5}\sqrt{x}} $ Total Internal Reflection: A ray of light in glass strikes a water-glass interface at an angle of incidence equal to one-half the critical angle for that interface. The index of refraction for water is 1.33, and for the glass it is 1.43. What angle does the refracted ray in the water make with the normal P is inversely proportional DY. IF P=1.2=when y=100, calculatea the value of p when y=4b the value of y when p=3 Aprojectile, fired with unknown initial velocity, lands 20sec later on side of hill, 3000m away horizontally and 450m vertically above its starting point. a) what is the vertical component of its initial velocity? b) what is the horizontal component of velocity? Anyone please help me I need help ?!!!!!): A journal entry for a payment for rent expense was posted as a debit to Salaries Expense and a credit to Cash. Which of the following statements correctly states the effect of the error on the trial balance? A. The sum of the credits will equal the sum of the debits. B. The sum of the debits will exceed the sum of the credits by . C. The sum of the debits will exceed the sum of the credits by . D. The sum of the credits will exceed the sum of the debits by . First, find the length of each edge of the cube.Then, find the volume. Acidic amino acids have two -COOH and one -NH2 group per molecule. Select the pair that consists of acidic amino acida) Aspartic Acid , Glutamic Acidb) Lysine , argininec) Glycine and alanined) Both a and b Which table represents a linear function? What is the initial value of the sequence?1238 Suppose that a company has the following accounts receivable collection pattern: Paid in the month of sale 25% Paid in the month following sale 75% All sales are on credit. If credit sales for January and February are $250,000 and $120,000 respectively, the cash collection for February is: Page 1:Page 2:And though my head felt heavy,I played on till duskMissing flies and pop-ups and groundersAnd calling out in desperation things likeYours and take it, but doing all right,Tugging at my cap in just the right way,Crouching low, my feet set.Hum baby sweetly on my lips.How I Learned English,Gregory DjanikanCompare the original ending with the version in which most of the vivid language has been taken out. Write three to four sentences explaining how the original version helps you visualize and understand the poems story. A 25.00 gram sample of an unknown metal initially at 99.0 degrees Celcius is added to 50.00 grams of water initially at 10.55 degrees Celcius. The final temperature of the system is 20.15 degrees Celcius. Calculate the specific heat of the metal. (The specific heat of water is 4.184 J/g*C). A certain bell rings every 60 minutes. Another Bell rings every 90 minutes. Both bells begin ringing at midnight (12:00 a.m). How many more times will both bells ring by 1 p.m