which values of x are solutions to the equation below?

Which Values Of X Are Solutions To The Equation Below?

Answers

Answer 1

Answer:

-5,5

Step-by-step explanation:

move the constant to the right to make it

3x^2=33+42

3x^2=75

divide both sides by 3

x^2=25

sq root of 25 is 5 and -5


Related Questions

need help pls with this question. im struggling with this question.

Answers

Answer:

i can't rn but i could explain to you how... so first put a point on 0,5 then move down one and right one... then keep moving down one and right one

and there you go thats your graph

Step-by-step explanation:

What is the equation of a line that passes through the point (5,-3) and has a slope of -2

Answers

Answer:

y=-2x+7

Step-by-step explanation:

The Slope is obviously -2, and just add a random y and play around with it until it goes through the point (5,-3)

A telephone service representative believes that the proportion of customers completely satisfied with their local telephone service is different between the South and the Midwest. The representative's belief is based on the results of a survey. The survey included a random sample of 1300 southern residents and 1380 midwestern residents. 39% of the southern residents and 50% of the midwestern residents reported that they were completely satisfied with their local telephone service. Find the 80% confidence interval for the difference in two proportions. Step 1 of 3 : Find the point estimate that should be used in constructing the confidence interval

Answers

Answer:

The point estimate that should be used in constructing the confidence interval is 0.11.

The 80% confidence interval for the difference in two proportions is (0.0856, 0.1344).

Step-by-step explanation:

Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

Midwest:

50% of 1380, so:

[tex]p_M = 0.5[/tex]

[tex]s_M = \sqrt{\frac{0.5*0.5}{1380}} = 0.0135[/tex]

South:

39% of 1300, so:

[tex]p_S = 0.39[/tex]

[tex]s_S = \sqrt{\frac{0.39*0.61}{1300}} = 0.0135[/tex]

Distribution of the difference:

[tex]p = p_M - p_S = 0.5 - 0.39 = 0.11[/tex]

So the point estimate that should be used in constructing the confidence interval is 0.11.

[tex]s = \sqrt{s_M^2+s_S^2} = \sqrt{0.0135^2+0.0135^2} = 0.0191[/tex]

Confidence interval:

[tex]p \pm zs[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

80% confidence level

So [tex]\alpha = 0.2[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.2}{2} = 0.9[/tex], so [tex]Z = 1.28[/tex].  

The lower bound of the interval is:

[tex]p - zs = 0.11 - 1.28*0.0191 = 0.0856[/tex]

The upper bound of the interval is:

[tex]p + zs = 0.11 + 1.28*0.0191 = 0.1344[/tex]

The 80% confidence interval for the difference in two proportions is (0.0856, 0.1344).

A 90% confidence interval is found to be (120,140). What is the margin of error?

Answers

Answer:

There is 10% error in both minimum and extreme values i.e. 120 & 140 , Error in 120 is 10% i.e. = 12, Since value can be more or less in error ∴ Error in 120 is ±12.

The equation cos(35•) = a/25 can be used to find the length of BC what is the length of BC round to the nearest tenth

Answers

Idrk tbh I need help with the same thing

Please help me determine the general equation for the graph above as well as solve for a. Thank you.

Answers

Observe that the x coords of the roots of a polynomial are,

[tex]x_{1,2,3,4}=\{-3,0,1,4\}[/tex]

Which can be put into form,

[tex]y=a(x-x_1)(x-x_2)(x-x_3)(x-x_4)[/tex]

with data

[tex]y=a(x-(-3))(x-0)(x-1)(x-4)=ax(x+3)(x-1)(x-4)[/tex]

Now if I take any root point and insert it into the equation I won't be able to solve for y because they will always multiply to zero (ie. when I pick [tex]x=-3[/tex] the right hand side will multiply to zero,

[tex]y=-3a(-3+3)(-3-1)(-3-4)=0[/tex]

and a will be "lost" in the process.

If we observed a non-root point that we could substitute with x and y and result in a non-loss process then you could find a. But since there is no such point (I don't think you can read it of the graph) there is no other viable way to find a.

Hope this helps :)

Keith is trying to figure out the area of his pool section in his backyard he knows that his pool is 20 feet long and 9 feet wide he also knows the sidewalk is 3 feet wide all around the floor what is the total area of the pool section of Keith’s backyard?

Answers

Answer:

The total area of the pool section of Keith's backyard is 390 square feet.

Step-by-step explanation:

Since Keith is trying to figure out the area of his pool section in his backyard, and he knows that his pool is 20 feet long and 9 feet wide, and he also knows the sidewalk is 3 feet wide all around the floor, to determine what is the total area of the pool section of Keith's backyard, the following calculation must be performed:

(20 + 3 + 3) x (9 + 3 + 3) = X

26 x 15 = X

390 = X

Therefore, the total area of the pool section of Keith's backyard is 390 square feet.

d) A movie time was 2hours. 10% of the time was taken advertisement. How long was the actual movie? ​

Answers

Answer:

108 minutes

Step-by-step explanation:

Lets say that M+A is the time of the movie and the advertisement, so;

M+A = 2

And we know that 10% of that time is advertisement, mathematically that is:

A = 0,1*2

So replacing the second equation in the first one we have;

M + 0,1*2 = 2

M = 2-0,1*2 = 1,8 hours

We can convert hours into minutes multiplying by 60

1,8h*60min/h = 108min

Simplify the given expression.

Answers

Answer:

8x-21

----------------------

(2x-7)(2x+7)

Step-by-step explanation:

7                       4

-----------   + ------------

4x^2 -49    2x+7

Factor  ( notice that it is the difference of squares)

7                       4

-----------   + ------------

(2x)^2 - 7^2    2x+7

7                       4

-----------       + ------------

(2x-7)(2x+7)    2x+7

Get a common denominator

7                       4(2x-7)

-----------       + ------------

(2x-7)(2x+7)    (2x-7)(2x+7)

Combine

7 +4(2x-7)

----------------------

(2x-7)(2x+7)  

7 +8x-28

----------------------

(2x-7)(2x+7)  

8x-21

----------------------

(2x-7)(2x+7)  

Answer:

(8x - 21) / (2x + 7)(2x - 7)

Step-by-step explanation:

7 / (4x^2 - 49)+ 4 / (2x + 7)

= 7 / (2x + 7)(2x - 7) + 4 / (2x + 7)

LCM = (2x + 7)(2x - 7)   so we have

(7 + 4(2x - 7) / (2x + 7)(2x - 7)

=   (8x - 21) / (2x + 7)(2x - 7).

Use the equation d=z–9 to find the value of d when z=10.

d=

Answers

Step-by-step explanation:

d = z - 9

d = 10 - 9  ----> substitute

d = 1

Hey guys please help me please and thank you

Answers

Answer:

Option B, 5/16

Step-by-step explanation:

f(4) = 5•(1/2)⁴

= 5•(1/2⁴)

= 5•(1/16)

= 5/16

Suppose you have 3 bags. Two of them contain a single $10 bill, and the third contains a single $5 bill. Suppose you pick one of these bags uniformly at random. You then add a $5 bill to the bag, so it now contains two bills. The bag is shaken, and you randomly draw a bill from the bag without looking into the bag. Suppose it turns out to be a $5 bill. If a you draw the remaining bill from the bag, what is the probability that it, too, is a $5 bill

Answers

Answer:

1/2

Step-by-step explanation:

Number of bags = 3

number of bags with $10 bill initially = 2

number of bags with $5 bill initially = 1

assume :

event you pick a $5 bill at first draw = A

event you pick a $5 bill at second draw = B

hence : P ( A n B ) = 1/3 * 1 = 1/3

P( A ) = ( 1/3 * 1 ) + ( 1/3 * 1/2 + 1/3 * 1/2 )  = 2/3

therefore P( that the second drawn bill is $5 )

P( B | A ) = P(A n B ) / P ( A )

              = (1/3) / (2/3) = 1/2

The probability that it, too, is a $ 5 bill is 33.33%.

Since you have 3 bags, and two of them contain a single $ 10 bill, and the third contains a single $ 5 bill, supposing you pick one of these bags uniformly at random and you then add a $ 5 bill to the bag, so it now contains two bills, and the bag is shaken, and you randomly draw a bill from the bag without looking into the bag, supposing it turns out to be a $ 5 bill, if a you draw the remaining bill from the bag, to determine what is the probability that it, too, is a $ 5 bill, the following calculation must be performed:

3 bags = 2 with a 10 bill and 1 with a 5 bill 1/3 = 0.3333 0.3333 x 100 = 33.33

Therefore, the probability that it, too, is a $ 5 bill is 33.33%.

Learn more in https://brainly.com/question/13243988

Segment addition and midpoints

Answers

N is the midpoint of MO and NO is 5, so MN would also be 5

MP = MN + NP = 5 + 9 = 14

What is the median to 17,19, 20, 21, 22, 25, 29, 30, 32, 35

Answers

Answer:

23.5

Step-by-step explanation:

The median is the middle value when the numbers are put in order from smallest to largest

17,19, 20, 21, 22, 25, 29, 30, 32, 35

There are 10 numbers

17,19, 20, 21, 22,      25, 29, 30, 32, 35

The middle is between 22 and 25

(22+25)/2 = 47/2 =23.5

Select the statement that best justifies the conclusion based on the given information.

l is in plane M,
x is on line l
Conclusion: x is in plane M.

a. A plane contains at least three points not all on the same line.
b. If two points lie in a plane, then the line containing them lies in that plane.
c. If a plane contains a line, it contains the points on the line.
d. Exactly one plane contains a given line and a point not on the line.

Answers

9514 1404 393

Answer:

  c. If a plane contains a line, it contains the points on the line.

Step-by-step explanation:

The only statement relating a point on a line to the plane containing the line is the one shown above.

_____

Additional comment

Identifying true statements is a reasonable strategy for many multiple-choice questions. Another strategy that can be employed is finding the one true statement that is relevant to the question being asked.

What is a corresponding pair for f(-7)=5

Answers

Answer:

An ordered pair for a function f(x) looks like (x, f(x)). So the ordered pair here would be (5, f(5)) or (5, 7). Either one would work, as they are the same.

simplify using the laws of exponents (4^3)^-2 × (2^3)^4 ×(8/15)^-2​

Answers

Answer:

[tex] \dfrac{225}{64} [/tex]

Step-by-step explanation:

[tex] (4^3)^{-2} \times (2^3)^4 \times (\dfrac{8}{15})^{-2} = [/tex]

[tex]= (2^2)^{-6} \times 2^{12} \times (\dfrac{15}{8})^{2}[/tex]

[tex]= 2^{-12} \times 2^{12} \times \dfrac{225}{64}[/tex]

[tex] = \dfrac{225}{64} [/tex]

Step by step explanation need it

Answers

Answer:

8/17

Step-by-step explanation:

The sine of an angle is defined as the opposite side to the reference angle divided by the hypotenuse.

The side opposite the angle is always the side not connected to the reference angle. In this case the opposite side = ZY

The hypotenuse = XZ

Sin(X) = ZY/XZ

Sin(X) = 1634 = 8 / 17

solution 2^2x+3-7(2^2x+1)+3=0 introduce Log​

Answers

Answer:

[tex]x = \frac{log\sqrt{-1/6}}{log2}[/tex]

Step-by-step explanation:

Given the expression

[tex]2^{2x}+3-7(2^{2x}+1)+3=0[/tex]

Let [tex]P=2^x[/tex]

Substituting into the expression, we will have:

[tex]P^2+3-7(P^2+1)+3=0\\Expand\\P^2+3-7P^2-7+3=0\\-6P^2-1=0\\6P^2=-1\\p^2=-1/6\\P=\sqrt{-1/6}[/tex]

Since:

[tex]P=2^x\\2^x=\sqrt{-1/6}\\xlog2=log(\sqrt{-1/6}) \\x = \frac{log\sqrt{-1/6}}{log2}[/tex]

Solve the above quadratic equation

Answers

Answer:

r = 1

Step-by-step explanation:

Find the intersection.

r = 1

r = 3

r = -1

r = 1

Answer:

r=3, r=1, r= -1

Step-by-step explanation:

48r^3-144r^2-48r=-144

48r^3-144r^2-48r +144 =-144 + 144

48r^3-144r^2-48r+144=0

48(r-3)(r+1)(r-1)

r-3=0 r+1=0 r-1=0

r=3, r=1, r= -1

What is the third step in sketching the graph of a rational function

Answers

Answer:

use test numbers to find where the function is a positive and where it is negative. sketch the function's graph, plotting additional points as guides as negative. choose test numbers to t the left and right of each of these places, and find the value of the function at each test number.

Find the value of x.
X 9 9 7 x = [?]

Answers

Due to the 2 lines being equal length from the center, the two outer lines are the same, the on is shown as 7, and another 7 bc of the lines that say they’re the same. Answer is 14

What is 4 × 1/7 on a numberline​

Answers

Answer:

4/7

Step-by-step explanation:

When you multiply by fractions you multiply the numerators and denominators

4/1 x 1/7

Anything that doesnt have anything under it always has a 1 as its denominator

If f (x) = 8X, then f (3) =
O 24
O 64
O 512
O 4,096

Answers

Answer: 24
Explanation:
F(x)= 8x
F(3)= 8*3
F(3)=24

A cylindrical vase has a diameter of 4 inches. At the bottom of the vase, there are 6 marbles, each of diameter 3 inches. The vase is filled with water up to a height of 8 inches. Which of the following could be used to calculate the volume of water in the vase?
π(2in)^2(8in) − 6(four over threeπ(1.5in)^3)
π(8in)^2(2in) − 6(four over threeπ(1.5in)^3)
π(2in)^2(8in) − 1.5(four over threeπ(6in)^3)
π(8in)^2(2in) − 1.5(four over threeπ(6in)^3)

Answers

The volume of the water is: [tex]\pi (2)^2(8) - 6 (\frac{4}{3} \pi (1.5)^3)[/tex]

The volume of a cylinder is;

[tex]V = \pi r^2h[/tex]

For the cylinder, we have:

[tex]d = 4[/tex] -- diameter

[tex]h = 8[/tex] --- height of the water in the cylinder

The radius of the cylinder is:

[tex]r =d/2 = 4/2 = 2[/tex]

So, the volume is:

[tex]V = \pi * 2^2 * 8[/tex]

[tex]V = \pi * (2)^2 (8)[/tex]

For the 6 marbles, we have:

[tex]d = 3[/tex] --- the diameter of each

The shape of the marble is a sphere. So, the volume of 1 marble is:

[tex]V = \frac{4}{3}\pi r^3[/tex]

The radius of 1 marble is:

[tex]r = d/2 = 3/2 = 1.5[/tex]

So, the volume of 1 marble is:

[tex]V_1 = \frac{4}{3} * \pi * (1.5)^3[/tex]

Multiply both sides by 6 to get the volume of the 6 marbles

[tex]6 * V_1 = 6 * \frac{4}{3} * \pi * (1.5)^3[/tex]

[tex]6V_1 = 6 * \frac{4}{3} * \pi * (1.5)^3[/tex]

[tex]6V_1 = 6 (\frac{4}{3} \pi (1.5)^3)[/tex]

Recall that the volume of the cylinder is:

[tex]V = \pi * (2)^2 (8)[/tex]

The volume of the water in the marble is the difference between the volume of the cylinder and the volume of the 6 marbles

So, we have:

[tex]Volume = \pi (2)^2(8) - 6 (\frac{4}{3} \pi (1.5)^3)[/tex]

The expression [tex]V = \pi \cdot (2\,in)^{2}\cdot (8\,in) -6\cdot \left[\frac{4\pi}{3}\cdot (1.5\,in)^{3} \right][/tex] can be used to calculate the volume of water in the vase.

As vase is of cylindrical form and the six marbles are spherical, we shall derived an expression from volume formulas respective to Cylinder and Spheres. Firstly, we know that volume of water in the vase is equal to the Volume of the vase minus the volume occupied by the six marbles, that is to say:

[tex]V = V_{v}-6\cdot V_{m}[/tex] (1)

Where:

[tex]V_{v}[/tex] - Volume of the vase, in cubic inches.

[tex]V_{m}[/tex] - Volume of the marble, in cubic inches.

[tex]V[/tex] - Volume of water in the vase, in cubic inches.

Then, we expand (1) by volume formulas for the cylinder and sphere:  

[tex]V = \pi\cdot R^{2}\cdot H - 6\cdot \left(\frac{4\pi}{3} \cdot r^{3} \right)[/tex] (2)

Where:

[tex]R[/tex] - Radius of the vase, in inches.

[tex]H[/tex] - Height of the vase, in inches.

[tex]r[/tex] - Radius of the marble, in inches.

If we know that [tex]R = 2\,in[/tex], [tex]H = 8\,in[/tex], [tex]r = 1.5\,in[/tex], then the following expression can be used to calculate the volume of water in the base:

[tex]V = \pi \cdot (2\,in)^{2}\cdot (8\,in) -6\cdot \left[\frac{4\pi}{3}\cdot (1.5\,in)^{3} \right][/tex]

In a nutshell, the expression [tex]V = \pi \cdot (2\,in)^{2}\cdot (8\,in) -6\cdot \left[\frac{4\pi}{3}\cdot (1.5\,in)^{3} \right][/tex] can be used to calculate the volume of water in the vase.

Find the interquartile range for a data set having the five-number summary: 4.6, 14.3, 19.7, 26.1, 31.2

Answers

Answer:  11.8

======================================================

Explanation:

The five number summary is the set of these items, in this exact order

Min = smallest valueQ1 = first quartileMedian = middle most numberQ3 = third quartileMax = largest value

So with the five number summary 4.6, 14.3, 19.7, 26.1, 31.2, we see that

Q1 = 14.3 and Q3 = 26.1

Subtracting these two values gets us the IQR (interquartile range)

IQR = Q3 - Q1

IQR = 26.1 - 14.3

IQR = 11.8

Use the discriminant to describe the roots of each equation. Then select the best description.
7x² + 1 = 5x

Answers

Answer:

Imaginary roots

Step-by-step explanation:

The discriminant of a quadratic in standard form [tex]ax^2+bx+c[/tex] is given by [tex]b^2-4ac[/tex].

Given [tex]7x^2+1=5x[/tex], subtract 5x from both sides so that the quadratic is in standard form:

[tex]7x^2-5x+1=0[/tex]

Now assign variables:

[tex]a\implies 7[/tex] [tex]b\implies -5[/tex] [tex]c\implies 1[/tex]

The discriminant is therefore [tex](-5)^2-4(7)(1)=25-28=\textbf{-3}[/tex].

What does this tell us about the roots?

Recall that the discriminant is what is under the radical in the quadratic formula. The quadratic formula is used to find the solutions of a quadratic. Therefore, the solutions of this quadratic would be equal to [tex]\frac{-b\pm \sqrt{-3}}{2a}[/tex] for some [tex]b[/tex] and [tex]a[/tex]. Since the number under the radical is negative, there are no real roots to the quadratic (whenever the discriminant is negative, the are zero real solutions to the quadratic). Therefore, the quadratic has imaginary roots.

A movie theater has a seating capacity of 187. The theater charges $5.00 for children, $7.00 for students, and $12.00 of adults. There are half as many adults as there are children. If the total ticket sales was $ 1338, How many children, students, and adults attended?
___ children attended.
___ students attended.
___ adults attended.

Answers

Answer:

A) children attended=98 b) students attended=60 c)adults attended=49

Step-by-step explanation:

system%28a%2Bc%2Bx=207%2Cc%2Fa=2%2C5c%2B7x%2B12a=1498%29

Simplify and solve the system.

-

a%2B2a%2Bx=207

3a%2Bx=207

x=207-3aandc=2a

-

The revenue equation can be written in terms of just one variable, a.

10a%2B7%28207-3a%29%2B12a=1498

Solve for a;

use it to find x and c.

FURTHER STEPS

-

10a%2B1449-21a%2B12a=1498

a%2B1449=1498

a=98-49

highlight%28a=49 -------adults

-

c=2a

c=2%2A49

highlight%28c=98 -------children

-

x=207-a-c

x=207-49-98

highlight%28x=60 ---------students

Rose plans to have two children but doesn’t know if they will be boy-boy, girl-girl, girl-boy, or boy-girl. What is the probability that she will have boy-girl?

Answers

Answer:

1/4

Step-by-step explanation:

There are four probabilities and the probability of her having 1 of the 4 probabilities is 1/4

Consider an x distribution with standard deviation o = 34.
(a) If specifications for a research project require the standard error of the corresponding distribution to be 2, how
large does the sample size need to be?
B) If specifications for a research project require the standard error of the corresponding x distribution to be 1, how large does the sample size need to be?

Answers

Part (a)

The standard error (SE) formula is

[tex]\text{SE} = \frac{\sigma}{\sqrt{n}}\\\\[/tex]

where n is the sample size. We're given SE = 2 and sigma = 34, so,

[tex]\text{SE} = \frac{\sigma}{\sqrt{n}}\\\\2 = \frac{34}{\sqrt{n}}\\\\2\sqrt{n} = 34\\\\\sqrt{n} = \frac{34}{2}\\\\\sqrt{n} = 17\\\\n = 17^2\\\\n = 289\\\\[/tex]

So we need a sample size of n = 289 to have an SE value of 2.

Answer: 289

========================================================

Part (b)

We'll use SE = 1 this time

[tex]\text{SE} = \frac{\sigma}{\sqrt{n}}\\\\1 = \frac{34}{\sqrt{n}}\\\\1*\sqrt{n} = 34\\\\\sqrt{n} = 34\\\\n = 34^2\\\\n = 1156\\\\[/tex]

Because we require greater precision (i.e. a smaller SE value), the sample size must be larger to account for this. In other words, as SE goes down, then n must go up, and vice versa.

Answer:  1156
Other Questions
please help asap!!!!!!!!!!! Calculate the force of gravity of a 25kg block resting on the earth (M=5.97x10^24kg). The radius of the earth is 6.38x10^6m.I already know...[tex](6.67*10^{-11})(25)(5.97*10^{24} )/(6.38*10^6)^2[/tex]But I don't understand what steps I have to take to solve that equation simplify the following 2 5 *5 5 Plzzzzz help meeee plzzzzzzz plzzz Which of the following should be included in a good conclusion? Find the inverse of f(x) = 1/2x + 3 A local radio commercial costs $600 and reaches an estimated 10,250 listeners. A local cable commercial costs $1000 and reaches an estimated 18,500 viewers. Which medium provides the lowest CPM Divide the fractions and reduce to lowest terms: 2/53/12 Read the passage. A Bear in the Army While traveling through Iran during World War II, a group of Polish soldiers encountered a young boy with an intriguing possession available for trade: a bear cub. The soldiers promptly bought the cub, named him Wojtek, and took him to join the rest of their unit. The playful bear adapted well to military life. However, when the unit was sailing for Italy, officials refused to allow the bear on the ship, saying that only soldiers were permitted. The solution was both obvious and extraordinary: the soldiers arranged for Wojtek to be officially enlisted in the army. As an enlisted soldier, he could accompany the men on their mission. "He didn't receive money," recalled one former soldier in an interview with the BBC World Service, "but was officially a Polish soldier." Wojtek remained with the company throughout the war and even helped carry heavy crates of ammunition to soldiers on the battlefield. What is the main idea of the passage?THE ANSWER The main idea of the passage is A Polish army unit grew so fond of a pet bear that they enlisted the animal in the army in order to bring him aboard a military ship. A bus traveling at a constant rate of 50 miles per hour. At this rate, how far will the bus travel 3 1/4 hours? Evaluate the expression-11^3The value of the expression is Choose the sentence that shows the correct usage of commas. Which ordered pairs make both inequalities true? Select two options.y < 5x + 2y 1/2x + 1A. (-1,3)B. (0,2)C. (1,2)D. (2,-1)E. (2,2) Help pleaseeeeeeeeeeeeees Question Find the difference of (t8)(t+15) .Do you think the lawyer is right that the "death sentence and the life sentence are equally immoral"? Why or why not. Someone help me with this please, I really need help, and it's due tmrw...PLEASE le feule nez la capitale the noun in plural what are the consequences of prolonged weightlessness on the human body? 5. What are the slope and y-intercept of the graph of y= 30 + 5?