A brewery has a beer dispensing machine that dispenses beer into the company's 12 ounce bottles. The distribution for the amount of beer dispensed by the machine follows a normal distribution with a standard deviation of 0.17 ounce. The company can control the mean amount of beer dispensed by the machine. What value of the mean should the company use if it wants to guarantee that 98.5% of the bottles contain at least 12 ounces (the amount on the label)
Answer:
The company should use a mean of 12.37 ounces.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The distribution for the amount of beer dispensed by the machine follows a normal distribution with a standard deviation of 0.17 ounce.
This means that [tex]\sigma = 0.17[/tex]
The company can control the mean amount of beer dispensed by the machine. What value of the mean should the company use if it wants to guarantee that 98.5% of the bottles contain at least 12 ounces (the amount on the label)?
This is [tex]\mu[/tex], considering that when [tex]X = 12[/tex], Z has a p-value of [tex]1 - 0.985 = 0.015[/tex], so when [tex]X = 12, Z = -2.17[/tex].
Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-2.17 = \frac{12 - \mu}{0.17}[/tex]
[tex]12 - \mu = -2.17*0.17[/tex]
[tex]\mu = 12 + 2.17*0.17[/tex]
[tex]\mu = 12.37[/tex]
The company should use a mean of 12.37 ounces.
A research center poll showed that 76% of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief?
Answer:
6/25
Step-by-step explanation:
P(have belief) =76/100 = 19/25
P (does not have belief) = 1-19/25 = 6/25
Đại biểu ĐBTQ lần thứ VIII (1996) của Đảng, xác định “phát huy nguồn lực con người là yếu tố cơ bản cho sự phát triển nhanh và bền vững trong quá trình CNH,HĐH đất nước”, anh/chị hãy phân tích quan điểm này và liên hệ thực tiễn Việt Nam hiện nay?
Which expression is equivalent to
ху^2/9
The expression equivalent to x(y)^(2/9) is option D. x [tex]\sqrt[9]{y^{2} }[/tex].
What are Expressions?Expressions are mathematical statements which consist of two or more terms and terms are connected to each other using mathematical operators like addition, multiplication, subtraction and so on.
The given expression is x(y)^(2/9).
We have to find the equivalent expressions of this.
We can write the exponent 2/9 as 2 × 1/9.
So, x(y)^(2/9) = x(y)^(2 × 1/9)
We have the power of a power rule,
(xᵃ)ᵇ = xᵃᵇ
Using this rule,
(y)^(2 × 1/9) = (y²)^(1/9)
So, x(y)^(2/9) = x (y²)^(1/9)
Also, we have,
[tex]\sqrt[n]{x}[/tex] = [tex](x)^{\frac{1}{n}}[/tex]
So, (y²)^(1/9) = [tex]\sqrt[9]{y^{2} }[/tex]
x(y)^(2/9) = x [tex]\sqrt[9]{y^{2} }[/tex]
Hence the equivalent expression is x [tex]\sqrt[9]{y^{2} }[/tex].
Learn more about Expressions here :
https://brainly.com/question/28170201
#SPJ7
Your question is incomplete. The complete question is as follows.
Find the sequence of this term
41,40,48,38 35,--....,...
Answer:
hxvkgyjdh ht yshysfhyys is not working properly configured form and the kids will not work with a little over again. thank you
1 gallon = 3.8 liters 1 mile = 1.6 kilometers using the conversion above,a bus that uses that uses 10 liters of gasoline to travel 10 liters of gasoline to travel 100 kilometers would have an efficiency rating closest to a) 15 miles per gallon b) 24 miles per gallon c) 38 miles per gallon d) 60 miles per gallon
9514 1404 393
Answer:
b) 24 miles per gallon
Step-by-step explanation:
The usual metric measure of vehicle fuel efficiency is liters per 100 km. Greater efficiency is indicated by a lower value.
In the US, the measure is usually miles per gallon. Greater efficiency is indicated by a higher value. Since we want the efficiency expressed in miles per gallon, we need to divide distance by fuel consumption.
(distance)/(fuel used) = (100 km)/(10 L)
= (100 km)/(10 L) × (1 mi)/(1.6 km) × (3.8 L)/(1 gal) = (100×3.8)/(10×1.6) mi/gal
= 23.75 mi/gal ≈ 24 mi/gal
Heather has $20 in her purse she earn some money at work and add it to the money in her purse at the end of the day she has $95 in her purse use M as a variable
Answer:
M=$75
Step-by-step explanation:
I used M for money that Heather earned.
$20+M=$95
Rationalize 2 / 2√2
Answer:
[tex]\frac{\sqrt{2} }{2}[/tex]
Step-by-step explanation:
[tex]\frac{2}{2\sqrt{2} }[/tex] * [tex]\frac{2\sqrt{2} }{2\sqrt{2} }[/tex] =[tex]\frac{4\sqrt{2} }{8}[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex]
Put these numbers in descending order.
0.308
0.193
0.26
0.6
Answer:
0.6
0.308
0.26
0.193
Step-by-step explanation:
0.6
0.308
0.26
0.193
(a) How many different three-letter initials can people have: , (b) How many different three-letter initials with none of the letters repeated can people have: , (c) How many different three-letter initials with letters repeated begin with an X: , (d) How many different three-letter initials begin with a F and end in a D: .
Answer:
Step-by-step explanation:
A) 26*26*26 =17576
B)26*25*24=15600
C)26*26=676
D) 26
As an estimation we are told £3 is €4. Convert €36 to pounds.
Answer:
€36 = 30.62 pounds sterling
Four students drive to school in the same car. The students claim they were late to school and missed a test because of a flat tire. On the makeup test, the instructor asks the students to identify the tire that went flat; front driver's side, front passenger's side, rear driver's side, or rear passenger's side. If the students didn't really have a flat tire and each randomly selects a tire, what is the probability that all four students select the same tire
Hence, the probability that all four students select the same tire is [tex]\frac{1}{16}[/tex].
What is the probability?
Probability means possibility. It is a branch of mathematics that deals with the occurrence of a random event. The value is expressed from zero to one.
Probability has been introduced in Maths to predict how likely events are to happen. The meaning of probability is basically the extent to which something is likely to happen.
Here given that,
Four students drive to school in the same car. The students claim they were late to school and missed a test because of a flat tire.
On the makeup test, the instructor asks the students to identify the tire that went flat; front driver's side, front passenger's side, rear driver's side, or rear passenger's side.
So, the probability of one person picking the tire is [tex]\frac{1}{4}[/tex].
Here four students so their probability is
[tex]\frac{1}{4(4)}=\frac{1}{16}[/tex]
Hence, the probability that all four students select the same tire is [tex]\frac{1}{16}[/tex].
To know more about the probability
https://brainly.com/question/12629667
#SPJ5
Question 1 The straight-line graph defined by the equation y = 2x – 4. will cut the y-axis at the point.
Answer:
(0;-4)
Step-by-step explanation:
cuz it cut the y-axis so x have to be 0
y=2*0 -4= -4
so the point is (0;-4)
Which expression is equivalent to (4x^(3)y^(5))(3x^(5)y)^(2)
Answer:
[tex](4x^3y^5)(3x^5y)^2 = 36*x^{13}y^7[/tex]
Step-by-step explanation:
Given
[tex](4x^3y^5)(3x^5y)^2[/tex]
Required
The equivalent expression
We have:
[tex](4x^3y^5)(3x^5y)^2[/tex]
Expand
[tex](4x^3y^5)(3x^5y)^2 = 4x^3y^5*9x^{10}y^2[/tex]
Further expand
[tex](4x^3y^5)(3x^5y)^2 = 4*9*x^3*x^{10}y^5*y^2[/tex]
Apply laws of indices
[tex](4x^3y^5)(3x^5y)^2 = 36*x^{13}y^7[/tex]
For what numbers is f(0) = sec 0 not defined?
Answer:
stundeez
Step-by-step explanation:
Nicki Minaj hdhsbskdhsnsk
Bearings And Vectors • The bearing of X from Y is 045 and the bearing of Z from Yis 145, where X, Y and Z are three points in the plane. If Y is equidistant from X and Z, find the bearing of Z from X.
9514 1404 393
Answer:
185°
Step-by-step explanation:
The triangle internal angle at Y is 145° -45° = 100°. Since the triangle is isosceles, the internal angles at X and Z are both (180° -100°)/2 = 40°. Then the bearing of Z from X is the bearing of Y from X less the internal angle at X:
(45° +180°) -40° = 185°.
Z from X is 185°.
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW. THIS IS NOT A TEST OR AN ASSESSMENT!! Please help me with these math problems. Chapter 12 part 2 PLEASE SHOW WORK!!!
4a. a_n = 2(1/3 + a_n-1), a_1 = 4
4b. a_n= n/(a_n-1), a_1 = 6
4c. 1/6, 2/3, 8/3, . . .
Problem 4a
The instructions are incomplete. You set up the recursive formula, but didn't ask any question about said formula.
I'll assume that your teacher wants you to list out a few terms. I'll list out the first five terms.
The notation a_1 = 4 is the same as writing [tex]a_1 = 4[/tex] where the '1' is a subscript. It tells us that the first term is 4.
The nth term a_n or [tex]a_n[/tex] is defined as such
[tex]a_n = 2*(1/3 + a_{n-1})\\\\[/tex]
Notice how if we replaced n with 2, then we get
[tex]a_n = 2*(1/3 + a_{n-1})\\\\a_2 = 2*(1/3 + a_{2-1})\\\\a_2 = 2*(1/3 + a_1)\\\\[/tex]
So the second term is directly tied to the first term, or it is dependent on it.
We'll replace a_1 with 4 to get the following
[tex]a_2 = 2*(1/3 + a_1)\\\\a_2 = 2*(1/3 + 4)\\\\a_2 = 2*(1/3 + 12/3)\\\\a_2 = 2*(13/3)\\\\a_2 = 26/3\\\\[/tex]
So the second term is 26/3.
As you can guess, the third term is going to be found in a similar fashion
[tex]a_n = 2*(1/3 + a_{n-1})\\\\a_3 = 2*(1/3 + a_{3-1})\\\\a_3 = 2*(1/3 + a_2)\\\\a_3 = 2*(1/3 + 26/3)\\\\a_3 = 2*(27/3)\\\\a_3 = 2*(9)\\\\a_3 = 18\\\\[/tex]
So 18 is the third term.
We'll repeat for n = 4 to get the fourth term.
[tex]a_n = 2*(1/3 + a_{n-1})\\\\a_4 = 2*(1/3 + a_{4-1})\\\\a_4 = 2*(1/3 + a_3)\\\\a_4 = 2*(1/3 + 18)\\\\a_4 = 2*(1/3 + 54/3)\\\\a_4 = 2*(55/3)\\\\a_4 = 110/3\\\\[/tex]
The fourth term is 110/3.
Lastly, we'll plug in n = 5
[tex]a_n = 2*(1/3 + a_{n-1})\\\\a_5 = 2*(1/3 + a_{5-1})\\\\a_5 = 2*(1/3 + a_4)\\\\a_5 = 2*(1/3 + 110/3)\\\\a_5 = 2*(111/3)\\\\a_5 = 2*(37)\\\\a_5 = 74\\\\[/tex]
The fifth term is 74.
Answer: The first five terms are 4, 26/3, 18, 110/3, 74==============================================================
Problem 4b
Again, the instructions are missing. I'll assume the same thing as problem 4a.
[tex]a_1 = 6[/tex] is the first term
Plug n = 2 into the first equation to get
[tex]a_n = \frac{n}{a_{n-1}}\\\\a_2 = \frac{2}{a_{2-1}}\\\\a_2 = \frac{2}{a_{1}}\\\\a_2 = \frac{2}{6}\\\\a_2 = \frac{1}{3}\\\\[/tex]
The second term is 1/3.
Repeat for n = 3
[tex]a_n = \frac{n}{a_{n-1}}\\\\a_3 = \frac{3}{a_{3-1}}\\\\a_3 = \frac{3}{a_{2}}\\\\a_3 = \frac{3}{1/3}\\\\a_3 = 3\div\frac{1}{3}\\\\a_3 = 3\times\frac{3}{1}\\\\a_3 = 9\\\\[/tex]
The third term is 9
Repeat for n = 4.
[tex]a_n = \frac{n}{a_{n-1}}\\\\a_4 = \frac{4}{a_{4-1}}\\\\a_4 = \frac{4}{a_{3}}\\\\a_4 = \frac{4}{9}\\\\[/tex]
The fourth term is 4/9
Repeat for n = 5
[tex]a_n = \frac{n}{a_{n-1}}\\\\a_5 = \frac{5}{a_{5-1}}\\\\a_5 = \frac{5}{a_{4}}\\\\a_5 = 5 \div a_{4}\\\\a_5 = 5 \div \frac{4}{9}\\\\a_5 = 5 \times \frac{9}{4}\\\\a_5 = \frac{5}{1} \times \frac{9}{4}\\\\a_5 = \frac{5*9}{1*4}\\\\a_5 = \frac{45}{4}\\\\[/tex]
Answer: The first five terms are 6, 1/3, 9, 4/9, 45/4==============================================================
Problem 4c
I'm not much help here for this problem. Not only are the instructions missing, but it's not clear how this sequence is set up. If I had to guess, it's somehow recursively defined. How exactly, I'm not sure. I would ask your teacher for any clarification.
90units needed 8 units per case what's the #of cases & # of additional units
Answer:
# of cases: 11
Additional units: 2
Step-by-step explanation:
If each case can hold 8 units, and we want to find the total # number of cases, we have to divide the # of units (8) for one case by the total # units (90).
As you can see, after dividing by 8, we have a total of 11 cases and a remainder of 2 units. The remainder will be the # of additional units because we cannot have another case filled with 8 units.
Brian wants to buy the same
number of hats for 3 of his
friends. He has $57 dollars, and
each hat costs $5. What is the
greatest number of hats that
Brian buys for each friend?
Answer:each friend gets 3.
Step-by-step explanation:
I need help ASAP please and thank you
Answer:
"a" is the answer because 3x+2 can not be equal to zero
Step-by-step explanation:
HELPSSS PLSSSS I need help!!
Step-by-step explanation:
The perimeter of the rectangle is
[tex]P = 2(4x + 2x) = 12x[/tex]
The perimeter of the octagon is
[tex]P = 8(1.5x) = 12x[/tex]
So for x = 1, the perimeter of the rectangle, as well as the octagon, is 12 cm. For x = 2, its 24 cm. For x = 3, it's 36 and so on. So the pattern here is with each integer increase in x, the perimeter increases by 12 cm. Also that the perimeters of both shapes are equal.
I need to know the answer ASAP please
By observing the points you can learn a lot about a function. Concretely [tex]f(x)[/tex] passes through [tex](1,1)[/tex] but [tex]g(x)[/tex] passes through [tex](1,-\frac{1}{2})[/tex] that should give you a hint that [tex]g(x)=-\frac{1}{2}x^2[/tex].
Hope this helps :)
a game is played using one die. if the die is rolled and shows a 2, the player wins $45. If the die shows any number other than 2, the player wins nothing.
If there is a charge of $9 to play the game what is the games expected value?
Answer:
The game's expected value is of -$1.5.
Step-by-step explanation:
Expected value:
Probability of each outcome multiplied by the outcome.
One out of 6 sides is 2:
1/6 probability of the player earning 45 - 9 = $36.
5/6 probability of the player losing $9. So
[tex]E = 36\frac{1}{6} - 9\frac{5}{6} = \frac{36 - 45}{6} = -\frac{9}{6} = -1.5[/tex]
The game's expected value is of -$1.5.
Solve d – 0.31 ≥ 1.87 Question 1 options: A) d ≤ 2.18 B) d = 2.18 C) d ≥ 1.56 D) d ≥ 2.18
Answer:
D) d ≥ 2.18
Step-by-step explanation:
d – 0.31 ≥ 1.87
d >_ 1.87 + 0.31
d >_ 2.18
7) Ten times the sum of -150 and a number yields -110.
Answer:
the answer to that is 10(N+14)=9N
Let the number = x
Set up an equation:
10(-150 + x ) = -110
Simplify:
-1500 + 10x = -110
Add 1500 to both sides
10x = 1390
Divide both sides by 10
X = 139
The number is 139
Remy drinks 2/1/4 cups of water every 1/4/5 hours.
How many cups of water does he drink in 1 hour?
Answer:
1¼ cups
Step-by-step explanation:
2¼ ÷ 1/4/5 =
9/4 ÷ 9/5 =
9/4 x 5/9 =
5/4 = 1¼
In a certain country people own a total of about 352 million fish, cats, and dogs as pets. The number of fish owned is 14 million more than the total number of cats
and dogs owned, and 11 million more cats are owned than dogs. How many of each type of pet do people in this country own?
Answer:
dogs = 79
dats = 90
fish = 183
Step-by-step explanation:
let the total number of dogs owned be x
no. of cats owned = x+11
no. of fish owned = x+11+x+14= 2x+25
hence,
2x+25+x+11+x=352
4x=316
x=316/4= 79mil
no. of cats owned = 79 + 11 = 90
no. of fish owned = 2(79)+25=183
(07.04 MC)
Jim is designing a seesaw for a children's park. The seesaw should make an angle of 30' with the ground, and the maximum height
to which it should rise is 2 meters, as shown below:
1
2 meters
30
What is the maximum length of the seesaw? (6 points)
Select one:
a. 3.00 meters
b. 3.5 meter
C. 4,00 meters
d 4.5 meters
The maximum length of the seesaw is option c 4.00 meters.
What is a right-angled triangle?A right-angled triangle is one in which one of the angles is equal to 90 degrees. A 90 degree angle is called a right angle, which is why a triangle made up of right angle is termed a right angled triangle.
What are hypotenuse, height of a right-angled triangle?A right-angled triangle has three sides- hypotenuse, base and height. Hypotenuse is the longest and also the opposite side of the right angle of the triangle, base and height of a right triangle are always the sides adjacent to the right angle.
How to measure the hypotenuse of a right-angled triangle?The formula for measuring the hypotenuse is,
Height / Hypotenuse = Sinθ , where θ is the angle opposite to the height of the triangle.
In the given question, the seesaw should make an angle of 30° with the ground and the maximum height it should rise is 2 meters so the height here is 2 meters. So the seesaw will make a right angled triangle.
Height = 2 meters, θ = 30°,
Now using the formula,
2 / Hypotenuse = Sin30°
Rearranging we get,
Hypotenuse = 2 / Sin30°
The value of Sin30° is 1/2 and putting the value we get,
Hypotenuse = 2 / (1/2)
= 2 × 2
= 4 meters.
Therefore, the maximum length of the seesaw (that is the hypotenuse ) is 4 meters.
To learn more about right-angled triangles and finding sides of it click here-brainly.com/question/10331046
#SPJ2
For each graph below, state whether it represents a function.
Answer:
graphs 1, 2, 3, and 4, can represent a function
graphs 5 and 6 can not represent a function.
Step-by-step explanation:
If for a given graph of a relationship you can draw a vertical line that intersects the graph in more than one point, then we can conclude that the graph does not represent a function.
Now, if we look at the first four graphs, we can see that no vertical line intersects more than one point, so the first four can represent functions.
The special case here is graph number 2, where we can see a white dot right below a colored dot, and if we draw a vertical line there, the line will touch both points. But, a white dot means that the exact point does not belong to the graph, so if the line passes through there, it will not intersect the graph.
For the last two, this is not the case, in graph 5 and graph 6 we could draw vertical lines that intersect the graphs twice
(any line like x = n, with n < 0, intersects two points in graph 5, while the line x = 0 intersects twice the graph number 6)
So graph 5 and graph 6 can't represent functions.
Near the beginning of Lesson 5.3, a strategy for factoring trinomials of the form x^2+ bx+c was
developed by exploring the product of the binomials (x+p) and (x+q).
Explain how the development of this factoring strategy is an example of working backwards
to solve a problem.
Answer:
Step-by-step explanation:
there are function that "invert" each other..
subtraction inverts addition...
3+2 = 5 ... 5-2 = 3
division inverts multiplication
5*2 = 10 ... 10/2 = 5
Using that concept, "factoring" is basically the inverse of multiplication
3x^2 + 9x can be factored to 3x(x+3)
if you multiply that out it reverts back to the original equation
so x^2 + 5x + 6 factors to (x+3)(x+2)
if you multiply that out (foil it)
you get x^2 + 5x + 6