Which statement about cultural differences in reinforcement is TRUE?
A. People from individualistic cultures may find the ability to get relatives jobs more reinforcing than people from
collectivistic cultures.
B. People from individualistic cultures may find awards that single them out as more reinforcing than people from
collectivistic cultures.
C. Women from individualistic cultures may place more importance on convenient working hours than women from
collectivistic cultures.
D. People from individualistic cultures find higher pay more reinforcing than people from collectivistic cultures.

Answers

Answer 1

People often wants to be recognized for their achievement. The true statement is that People from individualistic cultures may find awards that single them out as more reinforcing than people from

collectivistic cultures.

Individualism is simply known as a type of cultural system that place huge emphasis on the needs of the individual self more than those of the group/society.

It is often based on the individual self and its specific qualities that distinguishes one from others.

Collectivism is simply known as a cultural system that place emphasis on the needs of the group/society more than our self need self.

Learn more from

https://brainly.com/question/19253449


Related Questions

A car is traveling at 50 mi/h when the brakes are fully applied, producing a constant deceleration of 24 ft/s2. What is the distance (in ft) traveled before the car comes to a stop? (Round your answer to one decimal place.)

Answers

The car has initial speed 50 mi/h ≈ 73 ft/s, so it covers a distance x such that

0² - (73 ft/s)² = 2 (-24 ft/s²) x

==>   x111.0 ft

Se lanza un cohete en un ángulo de 53° sobre la horizontal con una rapidez inicial de 100 m/s. El cohete se mueve por
3.00 s a lo largo de su línea inicial de movimiento con una aceleración de 30.0 m/s2
. En este momento, sus motores fallan,
y el cohete procede a moverse como un proyectil. Determine: (a) la altitud máxima que alcanza el cohete, (b) su tiempo
total de vuelo y (c) su alcance horizontal

Answers

Answer:

Explanation:

v = u + at

v₃ = 100 +30.0(3.00) = 190 m/s

s = vt + ½at²

y₃ = (100sin53)(3.00) + ½(30sin53)(3.00²) = 347.4 m

x₃ = (100cos53)(3.00) + ½(30cos53)(3.00²) = 261.8 m

a) v² = u² + uas  

s = (v² - u²) / 2a

ymax = 347.4 + (0² - (190sin53)²) / (2(-9.80)) = 1,522 m

b) t₁ = 3.00 s

   t₂ = (190sin53) / 9.80 = 15.5 s

   t₃ = √(2(1522) / 9.80) = 17.6 s

t = 3.00 + 15.5 + 17.6 = 36.1 s

c) xmax = 261.8 + (190cos53)( 15.5 + 17.6) = 4,047 m

A ball of mass 0.50 kg is rolling across a table top with a speed of 5.0 m/s. When the ball reaches the edge of the table, it rolls down an incline onto the floor 1.0 meter below (without bouncing). What is the speed of the ball when it reaches the floor?

Answers

Answer:

0

Explanation:

The speed of the ball when it reaches the floor is 0 because any object at rest or in uniform motion has no speed or velocity

Joule is a SI unit of power
Measuring cylinder is used to measure the volume of a liquid

Answers

Answer:

The SI unit of power is watt

A resistor is submerged in an insulated container of water. A voltage of 12 V is applied to the resistor resulting in a current of 1.2 A. If this voltage and current are maintained for 5 minutes, how much electrical energy is dissipated by the resistor

Answers

Explanation:

Given:

[tex]\Delta t = 5\:\text{min} = 300\:\text{s}[/tex]

[tex]V = 12 V[/tex]

[tex]I = 1.2 A[/tex]

Recall that power P is given by

[tex]P = VI[/tex]

so the amount of energy dissipated [tex]\Delta E[/tex] is given by

[tex]\Delta E = VI\Delta t = (12\:\text{V})(1.2\:\text{A})(300\:\text{s})[/tex]

[tex]\:\:\:\:\:\:\:= 4320\:\text{W} = 4.32\:\text{kW}[/tex]

Derive the explicit rule for the pattern
3, 0, -3, -6, -9,

Answers

It is the last number minus 3
it’s the number -3 (subtract three)

A friend lends you the eyepiece of his microscope to use on your own microscope. He claims that since his eyepiece has the same diameter as yours but twice the focal length, the resolving power of your microscope will be doubled. Is his claim valid? Explain.

Answers

Answer:

The resolving power remains same.

Explanation:

The resolving power of the lens is directly proportional to the diameter of the lens not on the focal length.

As the diameter is same but the focal length is doubled so the resolving power remains same.

A magnetic field is passing through a loop of wire whose area is 0.015 m2. The direction of the magnetic field is parallel to the normal to the loop, and the magnitude of the field is increasing at the rate of 0.20 T/s. (a) Determine the magnitude of the emf induced in the loop. (b) Suppose the area of the loop can be enlarged or shrunk. If the magnetic field is increasing as in part (a), at what rate (in m^2/s) should the area be changed at the instant when B

Answers

This question is incomplete, the complete question is;

A magnetic field is passing through a loop of wire whose area is 0.015 m2. The direction of the magnetic field is parallel to the normal to the loop, and the magnitude of the field is increasing at the rate of 0.20 T/s.

(a) Determine the magnitude of the emf induced in the loop.

(b) Suppose the area of the loop can be enlarged or shrunk. If the magnetic field is increasing as in part (a), at what rate (in m^2/s) should the area be changed at the instant when B = 1.5 T, if the induced emf is to be zero? (Give the magnitude of the rate of change of the area.) (m2/s)

Answer:

a) the magnitude of the emf induced in the loop is 0.003 V

b) dA/dt = 0.002 m²/s

Explanation:

Area of the loop wire A = 0.015 m²

magnitude of the field is increasing dB/dt = 0.20 T/s

a)

Determine the magnitude of the emf induced in the loop.

V = A( dB/dt )

we substitute

V = 0.015 m² × 0.20 T/s

V = 0.003 V

Therefore,  the magnitude of the emf induced in the loop is 0.003 V

b)  the induced emf is;

V = B( dA/dt ) + A( dB/dt )

given that; induced emf is 0, B = 1.5

so we substitute

0 = [ 1.5T × ( dA/dt ) ] + [ 0.015 m² × 0.20 T/s ]

-[ 1.5T × ( dA/dt )] = 0.003 m²T/s

dA/dt = -[ 0.003 m²T/s / 1.5T ]

dA/dt = -0.002 m²/s

the negative shows that the area is decreasing

hence, dA/dt = 0.002 m²/s

Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon's tongue accelerates at a remarkable 220 m/s^2 for 20 msms, then travels at constant speed for another 30 ms.

Required:
During this total time of 50 ms, 1/20 of a second, how far does the tongue reach?

Answers

Solution :

We know,

Distance,

[tex]$S=ut+\frac{1}{2}at^2$[/tex]

[tex]$S=ut+0.5(a)(t)^2$[/tex]

For the first 20 ms,

[tex]$S=0+0.5(220)(0.020)^2$[/tex]

S = 0.044 m

In the remaining 30 ms, it has constant velocity.

[tex]$v=u+at$[/tex]

[tex]$v=0+(220)(0.020)[/tex]

v = 4.4 m/s

Therefore,

[tex]$S=ut+0.5(a)(t)^2$[/tex]

[tex]$S'=4.4 \times 0.030[/tex]

S' = 0.132 m

So, the required distance is = S + S'

                                              = 0.044 + 0.132

                                              = 0.176 m

Therefore, the tongue can reach = 0.176 m or 17.6 cm

Answer:

The total distance is 0.176 m.

Explanation:

For t = 0 s to t = 20 ms

initial velocity, u = 0

acceleration, a = 220 m/s^2

time, t = 20 ms

Let the final speed is v.

Use first equation of motion

v = u + at

v = 0 + 220 x 0.02 = 4.4 m/s

Let the distance is s.

Use second equation of motion

[tex]s = u t + 0.5 at^2\\\\s = 0 + 0.5 \times 220 \times 0.02\times 0.02\\\\s = 0.044 m[/tex]

Now the distance is

s' = v x t

s' = 4.4 x 0.03 = 0.132 m

The total distance is

S = s + s' = 0.044 + 0.132 = 0.176 m

Consider two points in an electric field. The potential at point 1, V1, is 33 V. The potential at point 2, V2, is 175 V. An electron at rest at point 1 is accelerated by the electric field to point 2.

Required:
Write an equation for the change of electric potential energy ΔU of the electron in terms of the symbols given.

Answers

Answer:

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

Explanation:

Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.

Substituting the values of the variables into the equation, we have

ΔV = V₂ - V₁.

ΔV = 175 V - 33 V.

ΔV = 142 V

The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.

So, substituting the values of the variables into the equation, we have

ΔU = eΔV

ΔU = eΔV

ΔU = -1.602 × 10⁻¹⁹ C × 142 V

ΔU = -227.484 × 10⁻¹⁹ J

ΔU = -2.27484 × 10⁻²¹ J

ΔU ≅ -2.275 × 10⁻²¹ J

So, the required equation for the electric potential energy change is

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

A parallel plate capacitor creates a uniform electric field of and its plates are separated by . A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed

Answers

Complete Question

A parallel plate capacitor creates a uniform electric field of 5 x 10^4 N/C and its plates are separated by 2 x 10^{-3}'m. A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed?

Answer:

[tex]V=1.4*10^5m/s[/tex]

Explanation:

From the question we are told that:

Electric field [tex]B=1.5*10N/C[/tex]

Distance [tex]d=2 x 10^{-3}[/tex]

At negative plate

Generally the equation for Velocity is mathematically given by

[tex]V^2=2as[/tex]

Therefore

[tex]V^2=\frac{2*e_0E*d}{m}[/tex]

[tex]V^2=\frac{2*1.6*10^{-19}(5*10^4)*2 * 10^{-3}}{1.67*10^{-28}}[/tex]

[tex]V=\sqrt{19.2*10^9}[/tex]

[tex]V=1.4*10^5m/s[/tex]

After enjoying a tasty meal of the first moth, the bat goes after another moth. Flying with the same speed and emitting the same frequency, this time the bat detects a reflected frequency of 55.5 kHz. How fast is the second moth moving

Answers

This question is incomplete, the complete question is;

A bat flies towards a moth at 7.1 m/s while the moth is flying towards the bat at 4.4 m/s. The bat emits a sound wave of 51.7 kHz.

After enjoying a tasty meal of the first moth, the bat goes after another moth. Flying with the same speed and emitting the same frequency, this time the bat detects a reflected frequency of 55.5 kHz. How fast is the second moth moving

Answer:

the second moth is moving at 5.062 m/s

Explanation:

Given the data in the question;

Using doppler's effect

[tex]f_{moth[/tex] = f₀( [tex]v_{s[/tex] ± [tex]v_{observer[/tex] / [tex]v_{s[/tex] ± [tex]v_{source[/tex] )

f₁ = f₀( ([tex]v_{s[/tex] + v₂) / ( [tex]v_{s[/tex] - v₁ ) )

frequency reflected from the moth,

Now, moth is the source and the bat is the receiver

f₂ = f₁( ([tex]v_{s[/tex] + v₁ ) / ( [tex]v_{s[/tex] - v₂ ) )

hence, f = f₀[ ( ( [tex]v_{s[/tex] + v₁ ) / ( [tex]v_{s[/tex] - v₂ ) ) ( ( [tex]v_{s[/tex] + u₂ ) / ( [tex]v_{s[/tex] - u₁ ) )

we know that, the velocity of sound [tex]v_{s[/tex] = 343 m/s.

given that v₁ and v₂ { velocity of bat } = 7.1 m/s, f₀ = 51.7 kHz and f = 55.5 kHz.

we substitute

55.5 = 51.7[ ( ( 343 + 7.1 ) / ( 343 - 7.1 ) ) ( ( 343 + u ) / ( 343 - u ) ) ]

55.5 = 51.7[  ( 350.1 / 335.9 ) ( ( 343 + u ) / ( 343 - u ) ) ]

55.5 = 51.7[ 1.04227 ( ( 343 + u ) / ( 343 - u ) ) ]

55.5 = 53.885359 ( ( 343 + u ) / ( 343 - u ) ) ]

55.5 / 53.885359 = ( 343 + u ) / ( 343 - u )

1.02996 =  ( 343 + u₂ ) / ( 343 - u )

( 343 + u₂ ) = 1.02996( 343 - u )

343 + u = 353.27628 - 1.02996u

u + 1.02996u = 353.27628 - 343

2.02996u = 10.27628

u = 10.27628 / 2.02996

u = 5.062 m/s

Therefore, the second moth is moving at 5.062 m/s

You drive 7.5 km in a straight line in a direction east of north.

a. Find the distances you would have to drive straight east and then straight north to arrive at the same point.
b. Show that you still arrive at the same point if the east and north legs are reversed in order.

Answers

Answer:

a)  a = 5.3 km, b) sum fulfills the commutative property

Explanation:

This is a vector exercise, If you drive east from north, we can find the vector using the Pythagorean theorem

              R² = a² + b²

where R is the resultant vector R = 7.5 km and the others are the legs

If we assume that the two legs are equal to = be

             R² = 2 a²

             r = √2 a

             a = r /√2

we calculate

             a = 7.5 /√2

             a = 5.3 km

therefore, you must drive 5.3 km east and then 5.3 km north and you will reach the same point

b) As the sum fulfills the commutative property, the order of the elements does not alter the result

         a + b = b + a

therefore, it does not matter in what order the path is carried out, it always reaches the same end point

When using the lens equation, a negative value as the solution for di indicates that the image is

Answers

Answer:

The Anatomy of a Lens

Refraction by Lenses

Image Formation Revisited

Converging Lenses - Ray Diagrams

Converging Lenses - Object-Image Relations

Diverging Lenses - Ray Diagrams

Diverging Lenses - Object-Image Relations

The Mathematics of Lenses

Ray diagrams can be used to determine the image location, size, orientation and type of image formed of objects when placed at a given location in front of a lens. The use of these diagrams was demonstrated earlier in Lesson 5 for both converging and diverging lenses. Ray diagrams provide useful information about object-image relationships, yet fail to provide the information in a quantitative form. While a ray diagram may help one determine the approximate location and size of the image, it will not provide numerical information about image distance and image size. To obtain this type of numerical information, it is necessary to use the Lens Equation and the Magnification Equation. The lens equation expresses the quantitative relationship between the object distance (do), the image distance (di), and the focal length (f)

a stone is thrown vertically upwards with a velocity of 20 m per second what will be its velocity when it reaches a height of 10.2 m​

Answers

Answer:

Explanation:

Here's the info we have:

initial velocity is 20 m/s;

final velocity is our unknown;

displacement is -10.2 m; and

acceleration due to gravity is -9.8 m/s/s. Using the one-dimensional equation

v² = v₀² + 2aΔx and filling in accordingly to solve for v:

[tex]v=\sqrt{(20)^2+2(-9.8)(-10.2)}[/tex]  Rounding to the correct number of sig fig's to simplify:

[tex]v=\sqrt{400+2.0*10^2}[/tex] to get

v = [tex]\sqrt{600}=20\frac{m}{s}[/tex] If you don't round like that, the velocity could be 24, or it could also be 24.5 depending on how your class is paying attention to sig figs or if you are at all.

So either 20 m/s or 24 m/s

Flapping flight is very energy intensive. A wind tunnel test
on an 89 g starling showed that the bird used 12 W of
metabolic power to fly at 11 m/s. What is its metabolic power for starting flight?

Answers

Answer:

The metabolic power for starting flight=134.8W/kg

Explanation:

We are given that

Mass of starling, m=89 g=89/1000=0.089 kg

1 kg=1000 g

Power, P=12 W

Speed, v=11 m/s

We have to find the metabolic power for starting flight.

We know that

Metabolic power for starting flight=[tex]\frac{P}{m}[/tex]

Using the formula

Metabolic power for starting flight=[tex]\frac{12}{0.089}[/tex]

Metabolic power for starting flight=134.8W/kg

Hence, the metabolic power for starting flight=134.8W/kg

An object whose weight is 100 lbf experiences a decrease in kinetic energy of 500 ft lbf and an increase in potential energy of 1500 ft lbf. The initial velocity and elevation of the object, each relative to the surface of the earth, are 40 ft/s and 30 ft, respectively. If g 5 32.2 ft/s2 , determine:
(a) the final velocity, in ft/s.
(b) the final elevation, in ft.

Answers

Answer:

a)  [tex]v_2=35.60ft/sec[/tex]

b) [tex]h_2=45ft[/tex]

Explanation:

From the question we are told that:

Weight [tex]W=100lbf[/tex]

Decrease in kinetic energy [tex]dK.E= 500 ft lbf[/tex]

Increase in potential energy [tex]dP.E =1500 ft lbf.[/tex]

Velocity [tex]V_1=40[/tex]

Elevation [tex]h=30ft[/tex]

[tex]g=32.2 ft/s2[/tex]

a)

Generally the equation for Change in Kinetic Energy is mathematically given by

[tex]dK.E=\frac{1}{2}m(v_1^2-v_2^2)[/tex]

[tex]500=\frac{1}{2}*\frac{100}{32.2}(v_1^2-v_2^2)[/tex]

[tex]v_2=35.60ft/sec[/tex]

b)

Generally the equation for Change in Potential Energy is mathematically given by

[tex]dP.E=mg(h_2-h_1)[/tex]

[tex]1500=mg(h_2-h_1)[/tex]

[tex]h_2=45ft[/tex]

The 52-g arrow is launched so that it hits and embeds in a 1.50 kg block. The block hangs from strings. After the arrow joins the block, they swing up so that they are 0.47 m higher than the block's starting point. How fast was the arrow moving before it joined the block? What mechanical work must you do to lift a uniform log that is 3.1 m long and has a mass of 100 kg from the horizontal to a vertical position?

Answers

Answer:

[tex]v_1=87.40m/s[/tex]

Explanation:

From the question we are told that:

Mass of arrow [tex]m=52g[/tex]

Mass of rock [tex]m_r=1.50kg[/tex]

Height [tex]h=0.47m[/tex]

Generally the equation for Velocity is mathematically given by

 [tex]v = \sqrt{(2gh)}[/tex]

 [tex]v=\sqrt{(2 * 9.8m/s² * 0.47m) }[/tex]

 [tex]v= 3.035m/s[/tex]

Generally the equation for conservation of momentum is mathematically given by

 [tex]m_1v_1=m_2v_2[/tex]

 [tex]0.052kg * v = 1.5 * 3.03m/s[/tex]

 [tex]v_1=87.40m/s[/tex]

A 90 kg man stands in a very strong wind moving at 17 m/s at torso height. As you know, he will need to lean in to the wind, and we can model the situation to see why. Assume that the man has a mass of 90 kg, with a center of gravity 1.0 m above the ground. The action of the wind on his torso, which we approximate as a cylinder 50 cm wide and 90 cm long centered 1.2 m above the ground, produces a force that tries to tip him over backward. To keep from falling over, he must lean forward.
A. What is the magnitude of the torque provided by the wind force? Take the pivot point at his feet. Assume that he is standing vertically. Assume that the air is at standard temperature and pressure.
B. At what angle to the vertical must the man lean to provide a gravitational torque that is equal to this torque due to the wind force?

Answers

Answer:

a)  [tex]t=195.948N.m[/tex]

b)  [tex]\phi=13.6 \textdegree[/tex]

Explanation:

From the question we are told that:

Density [tex]\rho=1.225kg/m^2[/tex]

Velocity of wind [tex]v=14m/s[/tex]

Dimension of rectangle:50 cm wide and 90 cm

Drag coefficient [tex]\mu=2.05[/tex]

a)

Generally the equation for Force is mathematically given by

[tex]F=\frac{1}{2}\muA\rhov^2[/tex]

[tex]F=\frac{1}{2}2.05(50*90*\frac{1}{10000})*1.225*17^2[/tex]

[tex]F=163.29[/tex]

Therefore Torque

[tex]t=F*r*sin\theta[/tex]

[tex]t=163.29*1.2*sin90[/tex]

[tex]t=195.948N.m[/tex]

b)

Generally the equation for torque due to weight is mathematically given by

[tex]t=d*Mg*sin90[/tex]

Where

[tex]d=sin \phi[/tex]

Therefore

[tex]t=sin \phi*Mg*sin90[/tex]

[tex]195.948=833sin \phi[/tex]

[tex]\phi=sin^{-1}\frac{195.948}{833}[/tex]

[tex]\phi=13.6 \textdegree[/tex]

I NEEED HELP IN PHYSICS PLEASE!

Answers

Answer:

in which topic you need help

A block of mass 0.260 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.090 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise

Answers

After being released, the restoring force exerted by the spring performs

1/2 (5200 N/m) (0.090 m)² = 12.06 J

of work on the block. At the same time, the block's weight performs

- (0.260 kg) g (0.090 m) ≈ -0.229 J

of work. Then the total work done on the block is about

W ≈ 11.83 J

The block accelerates to a speed v such that, by the work-energy theorem,

W = ∆K   ==>   11.83 J = 1/2 (0.260 kg) v ²   ==>   v ≈ 9.54 m/s

Past the equilibrium point, the spring no longer exerts a force on the block, and the only force acting on it is due to its weight, hence it has a downward acceleration of magnitude g. At its highest point, the block has zero velocity, so that

0² - v ² = -2gy

where y is the maximum height. Solving for y gives

y = v ²/(2g) ≈ 4.64 m

A man throw a ball vertically up word with an intial speed 20m/s. What is the maximum height rich by the ball and how long does it take to return to the point it was trow​

Answers

Answer:

u=20 m/s, T=4s

Explanation:

Given final velocity v= 0 m/s and displacement h= 20 m; acceleration due to gravity = 10 m/ s 2

From equation of motion 

v2=u2+2gs−u2=−2(10).20u=20m/s

and time t can be determined by the formula

t=gv−u=−10−20=2s

total time = 2× time of ascend=2×2=4s

it is helpful for you

Two motors in a factory are running at slightly different rates. One runs at 825.0 rpm and the other at 786.0 rpm. You hear the sound intensity increase and then decrease periodically due to wave interference. How long does it take between successive instances of the sound intensity increasing

Answers

Answer:

[tex]T=1.54s[/tex]

Explanation:

From the question we are told that:

Speed of Motor 1 [tex]\omega_1=825rpm=>2 \pi 13.75[/tex]

Speed of Motor 2 [tex]\omega_1=786rpm=>2 \pi 13.1[/tex]

Therefore

Frequency of Motor 1 [tex]f_1=13.75[/tex]

Frequency of Motor 2  [tex]f_2= 13.1[/tex]

Generally the equation for Time Elapsed is mathematically given by

[tex]T=\frac{1}{df}[/tex]

Where

[tex]df=f_1-f_2[/tex]

[tex]df=13.75-13.1[/tex]

[tex]df=0.65Hz[/tex]

Therefore

[tex]T=\frac{1}{65}[/tex]

[tex]T=1.54s[/tex]

Liquid plastic is frozen in a physical change that increases its volume. What can be known about the plastic after the change?
(A) Its mass will increase.
(B) Its density will increase.
(C) Its mass will remain the same.
(D) Its density will remain the same.

Answers

Answer:

c

Explanation:

Liquid plastic is frozen in a physical change that increases its volume,it can be known about the plastic that Its mass will remain the same, therefore the correct answer is option C.

What is the matter?

Anything which has mass and occupies space is known as matter ,mainly there are four states of matter solid liquid gases, and plasma.

These different states of matter have different characteristics according to which they vary their volume and shape.

It is known about plastic that its mass will remain the same when liquid plastic is frozen, by increasing its volume.

Liquid plastic is frozen in a physical change that increases its volume,it can be known about the plastic that Its mass will remain the same,  therefore the correct answer is C.

To earn more about the matter here,refer to the link;

brainly.com/question/9402776

#SPJ2

train starts from rest and accelerates at 1m/ s²
for 10 seconds how far does it move​

Answers

Answer:

s=50m

Explanation:

you can use the formula

s=ut+1/2at²

s=0t+1/2(1)10²

=1/2(100)

=50

I hope this helps

Which nucleus completes the following equation?
39 17 CI-> 0 -1 e+?

Answers

Answer:

[tex]_{18}^{39} } Ar[/tex]

Explanation:

The given equation shows the disintegration of an unstable isotope of chlorine to beta particle and Argon nucleus. The nucleus undergoes the emission of a beta particle to form a more stable nucleus of Argon.

[tex]_{17} ^{39} Cl[/tex] ⇒ [tex]_{-1}^{0} e[/tex] + [tex]_{18}^{39} } Ar[/tex]

Argon is a stable gas and is found in the group 8 on the periodic table of elements.

Answer:

Answer is below

Explanation:

39 18 Ar

Two friends, Al and Jo, have a combined mass of 194 kg. At the ice skating rink, they stand close together on skates, at rest and facing each other. Using their arms, they push on each other for 1 second and move off in opposite directions. Al moves off with a speed of 7.9 m/sec in one direction and Jo moves off with a speed of 6.7 m/sec in the other. You can assume friction is negligible.
What is Al's mass? 110.58 What is Jo's mass? If you assume the force is constant during the 1 second they are pushing on each other, what is the magnitude of the force of Al on Jo? If you assume the force is constant during the 1 second they are pushing on each other, what is the magnitude of the force of Jo on Al?

Answers

Answer:

The mass of Al is 89.027 kilograms.

The mass of Jo is 104.973 kilograms.

The magnitude of the force of Jo on Al is 596.481 newtons.

Explanation:

Given the absence of external forces, this situation can be described will by Principle of Linear Momentum Conservation and Impact Theorem on each skater:

Al:

[tex]m_{1}\cdot (v_{1, f}-v_{1, o}) = -F \cdot \Delta t[/tex] (1)

Jo:

[tex]m_{2}\cdot (v_{2,f}-v_{2,o}) = F\cdot \Delta t[/tex] (2)

Total mass:

[tex]m_{1} + m_{2} = 194\,kg[/tex]

Where:

[tex]m_{1}[/tex], [tex]m_{2}[/tex] - Masses of the skaters, in kilograms.

[tex]v_{1,o}[/tex], [tex]v_{1,f}[/tex] - Initial and final velocities of Al, in meters per second.

[tex]v_{2,o}[/tex], [tex]v_{2,f}[/tex] - Initial and final velocities of Jo, in meters per second.

[tex]F[/tex] - Impact force between skaters, in newtons.

[tex]\Delta t[/tex] - Impact time, in seconds.

If we know that [tex]v_{1,o} = 0\,\frac{m}{s}[/tex], [tex]v_{1,f} = -7.9\,\frac{m}{s}[/tex], [tex]\Delta t = 1\,s[/tex], [tex]v_{2,o} = 0\,\frac{m}{s}[/tex] and [tex]v_{2,f} = 6.7\,\frac{m}{s}[/tex], then the masses of the skaters are, respectively:

[tex](194-m_{2})\cdot (-7.9) = -F[/tex] (1b)

[tex]m_{2} \cdot 6.7 = F[/tex] (2b)

(2b) in (1b):

[tex](194-m_{2})\cdot (-7.9) = -m_{2}\cdot 6.7[/tex]

[tex]-1532.6 +7.9\cdot m_{2} = -6.7\cdot m_{2}[/tex]

[tex]14.6\cdot m_{2} = 1532.6[/tex]

[tex]m_{2} = 104.973\,kg[/tex]

[tex]m_{1} = 194\,kg - 104.973\,kg[/tex]

[tex]m_{1} = 89.027\,kg[/tex]

And the magnitude of the force is:

[tex]F = 6.7\cdot m_{2}[/tex]

[tex]F = 596.481\,N[/tex]

The mass of Al is 89.027 kilograms.

The mass of Jo is 104.973 kilograms.

The magnitude of the force of Jo on Al is 596.481 newtons.

At room temperature, sound travels at a speed of about 344 m/s in air. You see a distant flash of lightning and hear the thunder arrive 7.5 seconds later. How many miles away was the lighting strike? (Assume the light takes essentially no time to reach you).

Answers

Answer:

1.6031 miles

Explanation:

Given the following data;

Speed = 344 m/s

Time = 7.5 seconds

To find how many miles away was the lighting strike;

Mathematically, the distance travelled by an object is calculated by using the formula;

Distance = speed * time

Distance = 344 * 7.5

Distance = 2580 meters

Next, we would have to convert the value of the distance travelled in meters to miles;

Conversion:

1609.344 metres = 1 mile

2580 meters = X mile

Cross-multiplying, we have;

X * 1609.344 = 2580

X = 2580/1609.344

X = 1.6031 miles

A person pulls on a 9 kg crate against a 22 Newton frictional force, using a rope attached to the center of the crate. If the The crate began with a speed of 1.5 m/s and speeded up to 2.7 m/s while being pulled a horizontal distance of 2.0 meters. What is the work in J done by the force applied by the rope on the crate

Answers

Answer:

uninstell this apps nobody will give u ans its happening to me alsoi was in exam hall i thought this app will give answer but no

Each rarefraction on a longitudinal wave correspond to what point on a transverse wave?

Answers

Answer: In a longitudinal wave, the crest and trough of a transverse wave correspond respectively to the compression, and the rarefaction. A compression is when the particles in the medium through which the wave is traveling are closer together than in its natural state, that is, when their density is greatest.
Other Questions
All of the following are part of human systems exceptA. citiesB. economiesC. landformsD. religions What is the answer to this? PLZ answer correctly! Brainliest! Hippos are aggressive animals.They live mostly in water.that joining word Which word is a synonym of disperse? are these lines perpendicular explain HELP PLEASE!! WILL GIVE BRAINLIEST TO CORRECT QNSWER.Use the quadratic formula to find the solution to the quadratic equation given below.x-x+=0 The price, P of tickets at a movie theater since it opened in 2001 can be modeled by the linear equation shown, where t is the number of years since 2001. P = 8.75 + 0.35tWhat is the meaning of the P-intercept in this scenario?the price of a ticket in 2001the price of a ticket in 2001the increase in ticket price per yearthe increase in ticket price per yearthe total number of years the theater has been openthe total number of years the theater has been openthe difference in the price of a ticket in 2001 and the price in 2011 I been on this for days and no one can give me a right answer During the Ming dynasty, what country conquered Chinese-protected Korea? help please??????????? Consider the right triangle below. Solve for x. Label the sides in the image as opposite, adjacent, or hypotenuse, then show your work on the sketchpad. What is a scientific law. explain the electrolysis of MgCl2 in aqueous solution [tex]what \: is \: photosynthesis[/tex][tex]explain[/tex][tex]follow \: me \: please \: \\ good \: day[/tex]explain briefly What is the measure of An online survey asked a sample of high school students their favorite type of music, and the results were tabulated above. Find the probability that a person chosen at random did not choose pop music, given that the student is a sophomore or a junior. When scientists refer to the DNA to RNA to proteins pathway, the RNA part really represents three differenttypes of RNA: messenger RNA (mRNA), transfer RNA (tRNA), and ribosome RNA (rRNA). How is each type of RNA important to protein production? ( Will Mark Brainliest and please only answer if your company 100% sure. And Do Not Repost Someone Else's Answer that is on Brainly Or Any Other Websites Please. I need help I think the answer is G but I'm not to sure Which of the following are terms in this expression? Select all that apply. 6t+7+9s