Answer:
one solution
Step-by-step explanation:
3 -2x=5-x+3+4x
Combine like terms
3-2x = 8+3x
Add 2x to each side
3-2x+2x = 8+3x+2x
3 = 8+5x
Subtract 8 from each side
3-8 =8+5x-8
-5 =5x
Divide by 5
-5/5 = 5x/5
-1 =x
There is one solution
Which expression is equivalent to (3 squared) Superscript negative 2?
Answer:
–81
Step-by-step explanation:
Consider the probability that no more than 28 out of 304 students will not graduate on time. Choose the best description of the area under the normal curve that would be used to approximate binomial probability.
a. Area to the right of 27.5
b. Area to the right of 28.5
c. Area to the left of 27.5
d. Area to the left of 28.5
e. Area between 27.5 and 28.5
Solution :
Here the probability that exactly 28 out of 304 students will not graduate on time. That is
P (x = 28)
By using the normal approximation of binomial probability,
[tex]$P(x=a) = P(a-1/2 \leq x \leq a+1/2)$[/tex]
∴ [tex]$P(x=28) = P(28-1/2 \leq x \leq 28+1/2)$[/tex]
[tex]$=P(27.5 \leq x \leq 28.5)$[/tex]
That is the area between 27.5 and 28.5
Therefore, the correct option is (e). Area between 27.5 and 28.5
what is the formula to solve midpoint
Answer:
(x1 + x2) , (y1+y2)
2 2
Step-by-step explanation:
How many liters each of a 35% acid solution in a 80% acid solution must be used to produce 60 L of a 65% acid solution?
Let x and y be the required amounts of the 35% and 60% acid solutions, respectively.
x liters of 35% acid solution contains 0.35x L of acid.
y liters of 80% acid solution contains 0.80y L of acid.
Together, a combined (x + y) L of mixed solutions contains (0.35x + 0.80y) L of acid.
You want to end up with 60 L of 65% acid solution, which means
x + y = 60
0.35x + 0.80y = 0.65 × 60 = 39
Solve for x and y :
y = 60 - x
0.35x + 0.80 (60 - x) = 39
0.35x + 48 - 0.80x = 39
0.45x = 9
x = 20
y = 40
I need help answering this question thank guys
Answer:
b
Step-by-step explanation:
the square root of 8 is 2 and the square root of 18 is 4.5 and both simplified is 4/9.
Aslo did this last week.
what is the prime product of 120
Answer:
[tex]2^{3} * 3 * 5[/tex]
Step-by-step explanation:
Many individuals over the age of 40 develop intolerance for milk and milk-based products. A dairy has developed a line of lactose-free products that are more tolerable to such individuals. To assess the potential market for these products, the dairy commissioned a market research study of individuals over 40 years old in its sales area. A random sample of 250 individuals showed that 86 of them suffer from milk intolerance. Based on the sample results, calculate a 90% confidence interval for the population proportion that suffers milk intolerance. Interpret this confidence interval. a) First, show that it is okay to use the 1-proportion z-interval. b) Calculate by hand a 90% confidence interval. c) Provide an interpretation of your confidence interval. d) If the level of confidence was 95% instead of 90%, would the resulting interval be narrower or wider
Answer:
a) To show that we can use the 1 proportion z-interval, we know that 250 ( size sample) is big enough to approximate the binomial distribution ( tolerance-intolerance) to a normal distribution.
b) See step by step explanation
CI 90 % = ( 0,296 ; 0,392)
c) We can support that with 90 % of confidence we will find the random variable between this interval ( 0,296 ; 0,392)
d) the CI 95 % will be wider
Step-by-step explanation:
Sample Information:
Sample size n = 250
number of people with milk intolerance x = 86
p₁ = 86 / 250 p₁ = 0.344 and q₁ = 1 - p₁ q₁ = 0,656
To calculate 90 % of Confidence Interval α = 10% α/2 = 5 %
α/2 = 0,05 z(c) from z-table is: z(c) = 1.6
Then:
CI 90 % = ( p₁ ± z(c) * SE )
SE = √ (p₁*q₁)/n = √ 0,225664/250
SE = 0,03
CI 90 % = ( 0,344 ± 1,6* 0,03 )
CI 90 % = ( 0,344 - 0,048 ; 0,344 + 0,048)
b) CI 90 % = ( 0,296 ; 0,392)
a) To show that we can use the 1 proportion z-interval, we know that 250 ( size sample) is big enough to approximate the binomial distribution ( tolerance-intolerance) to a normal distribution.
c) We can support that with 90 % of confidence we will find the random variable between this interval ( 0,296 ; 0,392) .
d) CI 95 % then significance level α = 5 % α/2 = 2.5 %
α/2 = 0,025 z(c) = 1.96 from z-table
SE = 0,03
And as 1.96 > 1.6 the CI 95 % will be wider
CI 95% = ( 0,344 ± 1.96*0,03 )
CI 95% = ( 0,344 ± 0,0588 )
CI 95% = ( 0,2852 ; 0,4028 )
Which graph shows a set of ordered pairs that represent a function?
Answer:
Graph C.
*See attachment below
Step-by-step explanation:
A graph that shows a set of ordered pairs representing a function would have each x-value being plotted against only one y-value. That is, every x-value must have exactly one y-value. Every x-value must not have more than 1 y-value being plotted against it.
The graph that shows this is the graph in option as shown in the attachment below.
Use the given conditions to write an equation for each line in point-slope form and slope-intercept form.
Slope= 1/3, passing through the origin
Answer:
[tex](y - 0) = \frac{1}{3} (x - 0)[/tex]
[tex]y = \frac{1}{3} x[/tex]
1. The curve y = (x - 1)(x – 5) cuts the x-axis at A and B and the y-axis at C.
(a) Find the coordinates of A and B.
(b) Hence, find the coordinates of the turning point, M.
Is M a maximum or a minimum point?
(c) Find the coordinates of C.
(d) Sketch the graph of y = (x - 1)(x - 5).
The mother was fed 21 fish, how many fish was the cub fed?
Suppose that a local TV station conducts a survey of a random sample of 120 registered voters in order to predict the winner of a local election. The Democrat candidate was favored by 62 of the respondents.
Required:
a. Construct and interpret a 99% CI for the true proportion of voters who prefer the Republican candidate.
b. If a candidate needs a simple majority of the votes to win the election, can the Republican candidate be confident of victory? Justify your response with an appropriate statistical argument.
Answer:
a) The 99% CI for the true proportion of voters who prefer the Republican candidate is (0.3658, 0.6001). This means that we are 99% sure that the true population proportion of all voters who prefer the Republican candidate is (0.3658, 0.6001).
b) The upper bound of the confidence interval is above 0.5 = 50%, which meas that the candidate can be confidence of victory.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
Sample of 120 registered voters in order to predict the winner of a local election. The Democrat candidate was favored by 62 of the respondents.
So 120 - 62 = 58 favored the Republican candidate, so:
[tex]n = 120, \pi = \frac{58}{120} = 0.4833[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4833 - 2.575\sqrt{\frac{0.4833*0.5167}{120}} = 0.3658[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4833 + 2.575\sqrt{\frac{0.4833*0.5167}{120}} = 0.6001[/tex]
The 99% CI for the true proportion of voters who prefer the Republican candidate is (0.3658, 0.6001). This means that we are 99% sure that the true population proportion of all voters who prefer the Republican candidate is (0.3658, 0.6001).
b. If a candidate needs a simple majority of the votes to win the election, can the Republican candidate be confident of victory? Justify your response with an appropriate statistical argument.
The upper bound of the confidence interval is above 0.5 = 50%, which meas that the candidate can be confidence of victory.
What else would need to be congruent to show that ABC= A DEF by the
AAS theorem?
B
E
Given:
ZA ZD
AB DE
A
F
A. AC = DF
B. ZCE ZF
C. BC = BC
D. BEZE
Answer:
[tex]\angle C \cong \angle F[/tex]
Step-by-step explanation:
Given
[tex]\angle A \cong \angle D[/tex]
[tex]AB \cong DE[/tex]
See attachment
Required
What proves [tex]\triangle ABC \cong \triangle DE F[/tex] by AAS
We have:
[tex]\angle A \cong \angle D[/tex] --- Angle
[tex]AB \cong DE[/tex] --- Side
We need to prove that one more angle are congruent
[tex]\angle B \cong \angle E[/tex]
The above angles are congruent; however, it will prove [tex]\triangle ABC \cong \triangle DE F[/tex] by ASA
So, we make use of:
[tex]\angle C \cong \angle F[/tex] because it completes the proof by AAS
Help please this is due today
9514 1404 393
Answer:
the correct choice is marked
Step-by-step explanation:
The end behavior matches that of an odd-degree polynomial. The only function shown that has that behavior is the one marked:
[tex]f(x)=\dfrac{x^2-36}{x-6}=\dfrac{(x+6)(x-6)}{(x-6)}=x+6\qquad x\ne6[/tex]
__
Additional comment
The other functions have horizontal (not slant) asymptotes, so do not have the described end behavior.
B: y=0
C, D: y=1
Complete the equation
[tex] \sqrt{20} = \: \: \sqrt{5} [/tex]
Step-by-step explanation:
I'm not sure about it
Try it find examples
Step-by-step explanation:
so at the end 2=1
not sure but hopefully you get the idea :)
the mean of 200 item was 50 later on it was found that two items were wrongly taken as 92 and 8 instead of 192 and 88 find the correct mean.
Answer:
Since, mean of 200 items was 50 and number of items =200
So, mean =50
Also, we know mean = number of itemssum of items
∴50=200sum of items
Sum of items = 200×50=10000
Later on, it was discovered that the two items were misread as 92 and 8 instead of 192 and 88 respectively
Then misread instead Correct item
92 192 192-92=100
8 88 88-8=80
∴ Correct sum of items =10000+180=10180
∴ Correct mean = number of items/sum of items
=10180/200 =50.9
Answer:
Hello,
203.6
Step-by-step explanation:
Sum of the item first= 50*200=10000
new sum is 10000+(192-92)+(88-8)=10180
New mean=10180/200=50.9
Help please, thanks as always in advance.
Which correlation coefficient indicates the data set with the strongest linear correlation?
0.41
−0.25
0.66
−0.83
Step-by-step explanation:
Which correlation coefficient indicates the data set with the strongest linear correlation?
0.66
The correlation coefficient indicates the data set with the strongest linear correlation is -0.83
What is correlation coefficient?"It measures the strength of the relationship between two relative variables."
What is linear correlation?"When the rate of change is constant between two variables then it is said to be linear correlation."
For given example,
We have been given correlation coefficients.
We need to find the correlation coefficient that indicates the data set with the strongest linear correlation.
We know, the correlation coefficient lies between -1 to 1.
So, the strongest linear correlation is indicated by a correlation coefficient of -1 or 1.
From given correlation coefficients,
-0.83 is close to -1.
Therefore, the correlation coefficient indicates the data set with the strongest linear correlation is -0.83
Learn more about linear correlation coefficient here:
https://brainly.com/question/12400903
#SPJ2
Three construction companies have bid for a job. Max knows that the two companies with which he is competing have probabilities 1/3 and 1/9, respectively, of getting the job. What is the probability that Max will get the job?
Answer:
0.5555 = 55.55% probability that Max will get the job.
Step-by-step explanation:
What is the probability that Max will get the job?
The sum of all probabilities is 100% = 1, so, considering Max's probability as x:
[tex]x + \frac{1}{3} + \frac{1}{9} = 1[/tex]
[tex]\frac{9x + 3 + 1}{9} = 1[/tex]
[tex]9x + 4 = 9[/tex]
[tex]9x = 5[/tex]
[tex]x = \frac{5}{9}[/tex]
[tex]x = 0.5555[/tex]
0.5555 = 55.55% probability that Max will get the job.
The max has probability of getting this job is x= 0.5555 and 55.55%
Suppose that ;
Max has probability of getting this job is = x
and other two companies have probability to get job is [tex]\frac{1}{3} or \frac{1}{9}[/tex].
Sum of the probability have bid a job is 100% which is equal to 1.
The sum of the probabilities in a probability distribution is always 1. A probability distribution is a collection of probabilities that defines the likelihood of observing all of the various outcomes of an event or experiment. Based on this definition, a probability distribution has two important properties that are always true:According to given question ;
Sum of all the companies having probability to get the job = 1
[tex]x + \frac{1}{3} + \frac{1}{9} = 1[/tex]
[tex]\frac{9.x+1.3+1.1}{9} = 1\\9x+3+1 = 9.1\\9x+4 =9\\9x = 9-4\\9x = 5\\x = \frac{5}{9}[/tex]
x = 0.5555
The Max has probability of getting this job is x= 0.5555 or 55.55%
For the more information about probability click the link given below
https://brainly.com/question/14210034
Rose walks 2 2/3 km in three-fifths of an hour. If her speed remains unchanged, how many kilometres can she walk in one and three quarters of an hour? Express your answer as a mixed number in lowest terms
Answer:
Distance = 7 7/9 Km
Step-by-step explanation:
Given the following data;
Distance = 2⅔ = 8/3 Km
Time = ⅗ hour
First of all, we would find her speed;
Speed = distance/time
Speed = (8/3)/(3/5)
Speed = 8/3 * 5/3
Speed = 40/9 km/h
Next, we would find the distance covered when time = 1¾ hours
Distance = speed * time
Distance = 40/9 * 1¾
Distance = 40/9 * 7/4
Distance = 10/9 * 7
Distance = 70/9
Distance = 7 7/9 Km
Find the value of x.
x
9
9
7
x = [?]
Answer:
14
Step-by-step explanation:
The sum of three numbers is 124
The first number is 10 more than the third.
The second number is 4 times the third. What are the numbers?
Answer:
182/3,3 8/3, 152/3
Step-by-step explanation:
a+b+c=124
a trừ c= 10
4b=c
Answer:
a=29,b=79,c=19
Step-by-step explanation:
a=c+10
b=4c
=> a+b+c=c+10+4c+c=124
=> c=19
=> a= 29, b=79
Simplify the radical expression.
3^√0.125b^3
A. -5b
B. -0.5b
C. 0.5b
D. 5b
Assume a significance level of α=0.05 and use the given information to complete parts (a) and (b) below. Original claim: More than 49% of adults would erase all of their personal information online if they could. The hypothesis test results in a P-value of 0.0281.
Required:
a. State a conclusion about the null hypothesis.
b. Without using technical terms, state a final conclusion that addresses the original claim. Which of the following is the correct conclusion?
1. The percentage of adults that would erase all of their personal information online if they could is more than or equal to 49%.
2. There is sufficient evidence to support the claim that the percentage of adults that would erase all of their personal information online if they could is less than 49%.
3. There is not sufficient evidence to support the claim that the percentage of adults that would erase all of their personal information online if they could is less than 49%.
4. The percentage of adults that would erase all of their personal information online if they could is less than 49%.
Answer:
Part a: The correct answer is A, reject H0 because p value is less than . Part B: The correct answer is C, the percentage of adults that would erase their personal information online if they could is more than 51%.
Step-by-step explanation:
part a. The essential idea of hypothesis testing in statistics is to evaluate the probability p (p value) of some representative parameter, compared to a level of likelihood that is set before starting the test (). In this case, we are interested in a level of likelihood , which means that if the probability of the parameter is less than 5%, we will reject the hypothesis that this parameter is representing, since it's so unlikely. Of course, the significance level is arbitrary and must be payed attention, according to the particular situation. Therefore, the correct anser is A.
part b. Since we rejected the hypothesis to a 5% significance level, we reject the fact that less than 51% of adults would erase their personal information online if they could. This is equivalent to saying that a percentage of adults equal to or more than 51% would erase their personal information if they
I need help so what’s 6 divide by 2(1+2)=
Answer:
9
Step-by-step explanation:
Divide 6 by 2:
3(1+2)
Add 1 and 2:
3 x 3
Multiply 3 by 3:
3 x 3 = 9
Answer:
1
Step-by-step explanation:
6
------
2(1+2)
6
-----
2(3)
6
-----
6
1
Solve the triangle.
B = 67° 45', c= 37 m, a = 76 m
What is the length of side b?
b= m
(Round to the nearest whole number as needed.)
What is the measure of angle A?
A=0°
(Round to the nearest whole number as needed.)
What is the measure of angle C?
C=
(Round to the nearest whole number as needed.)
9514 1404 393
Answer:
b = 71 m
A = 83°
C = 29°
Step-by-step explanation:
Many calculators can solve triangles. Apps are available for phone and tablet, or on the internet, like the one used here. In general, it takes less time to use one of these than to type your question into Brainly.
Given two sides and the angle between them, the Law of Cosines is the appropriate relation to use for finding the third side.
b = √(a² +c² -2ac·cos(B))
b = √(76² +37² -2·76·37·cos(67.75°)) ≈ √5015.48
b ≈ 70.82005 ≈ 71 . . . meters
__
One a side and its opposite angle are known, the remaining angles are found using the Law of Sines.
sin(A)/a = sin(B)/b
A = arcsin(a·sin(B)/b) = arcsin(76·sin(67.75°)/70.82005) ≈ 83.33°
A ≈ 83°
C = arcsin(37·sin(67.75°)/70.82005) ≈ 28.92°
C ≈ 29°
Or, you can find the remaining angle from 180° -68° -83° = 29°.
Consider the probability that at least 88 out of 153 registered voters will vote in the presidential election. Assume the probability that a given registered voter will vote in the presidential election is 63%. Approximate the probability using the normal distribution. Round your answer to four decimal places
Answer:
0.9319 = 93.19% probability that at least 88 out of 153 registered voters will vote in the presidential election.
Step-by-step explanation:
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
153 voters:
This means that [tex]n = 153[/tex]
Assume the probability that a given registered voter will vote in the presidential election is 63%.
This means that [tex]p = 0.63[/tex]
Mean and standard deviation:
[tex]\mu = E(X) = np = 153(0.63) = 96.39[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{153*0.63*0.37} = 5.97[/tex]
Consider the probability that at least 88 out of 153 registered voters will vote in the presidential election.
Using continuity correction, this is: [tex]P(X \geq 88 - 0.5) = P(X \geq 87.5)[/tex], which is 1 subtracted by the p-value of Z when X = 87.5.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{87.5 - 96.39}{5.97}[/tex]
[tex]Z = -1.49[/tex]
[tex]Z = -1.49[/tex] has a p-value of 0.0681.
1 - 0.0681 = 0.9319
0.9319 = 93.19% probability that at least 88 out of 153 registered voters will vote in the presidential election.
The triangles are similar, find y
Answer:
y=3.6
Step-by-step explanation:
The scale factor is 3/2.4. So 4.5/y=3/2.4. y=3.6
In the past, Alpha Corporation has not performed incoming quality control inspections but has taken the word of its vendors. However, Alpha has been having some unsatisfactory experience recently with the quality of purchased items and wants to set up sampling plans for the receiving department to use. For a particular component, X, Alpha has a lot tolerance percentage defective of 52 percent. Zenon Corporation, from which Alpha purchases this component, has an acceptable quality level in its production facility of 20 percent for component X. Alpha has a consumer's risk of 10 percent and Zenon has a producer's risk of 5 percent. a. When a shipment of Product X is received from Zenon Corporation, what sample size should the receiving department test
Answer:
The answer is "28"
Step-by-step explanation:
[tex](LTPD) = 52\%\\\\(AQL) = 20\%\\\\\to \frac{LTPD}{AQL} = \frac{52\%}{20\%}= 2.6\\\\[/tex]
The value of [tex]\frac{LTPD}{AQL} = 2.6[/tex] that value of [tex]\frac{LTPD}{AQL} = 2.618[/tex]
Acceptance number, [tex]c = 9[/tex]
Value of [tex]n\times AQL = 5.426[/tex]
Sample size [tex]n = n\times \frac{AQL}{AQL} =\frac{5.426}{20\%} = 27.13=28[/tex]
Let f(x,y) =2x^3 y-xy find the domain
9514 1404 393
Answer:
x, y ∈ all real numbers
Step-by-step explanation:
For your function ...
f(x, y) = 2x^3·y -xy
there appear to be no values of x or y for which the function is undefined. The domain for both x and y is "all real numbers."
Find the slope of the graphed line
Answer:
4
Step-by-step explanation:
Pick two points on the line
(0,-5) and (1,-1)
We can find the slope using
m = (y2-y1)/(x2-x1)
= ( -1 - -5)/(1 - 0)
(-1+5)/(1-0)
4/1
= 4